An Efficient Branch and Cut Algorithm to Find Frequently Mutated Subnetworks in Cancer

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9838)


Cancer is a disease driven mostly by somatic mutations appearing in an individual’s genome. One of the main challenges in large cancer studies is to identify the handful of driver mutations responsible for cancer among the hundreds or thousands mutations present in a tumour genome. Recent approaches have shown that analyzing mutations in the context of interaction networks increases the power to identify driver mutations.

In this work we propose an ILP formulation for the exact solution of the combinatorial problem of finding subnetworks mutated in a large fraction of cancer patients, a problem previously proposed to identify important mutations in cancer. We show that a branch and cut algorithm provides exact solutions and is faster than previously proposed greedy and approximation algorithms. We test our algorithm on real cancer data and show that our approach is viable and allows for the identification of subnetworks containing known cancer genes.


Cancer mutations Branch and cut Combinatorial optimization Network analysis 



Computation for the work described in this paper was supported by the DeiC National HPC Center, University of Southern Denmark. This work is supported, in part, by MIUR of Italy under project AMANDA and by NSF grant IIS-1247581, and has been done, in part, while FV was a research fellow at the Simons Institute for the Theory of Computing (University of California, Berkeley). The results presented in this manuscript are in whole or part based upon data generated by the TCGA Research Network:


  1. 1.
    Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 245–270. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Benetatos, L., Vartholomatos, G., Hatzimichael, E.: Polycomb group proteins and MYC: the cancer connection. Cell. Mol. Life Sci. 71(2), 257–269 (2014)CrossRefGoogle Scholar
  3. 3.
    Bruckner, S., Hüffner, F., Karp, R.M., et al.: Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3), 237–252 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Creixell, P., Reimand, J., Haider, S., et al.: Pathway and network analysis of cancer genomes. Nat. Methods 12(7), 615–621 (2015)CrossRefGoogle Scholar
  5. 5.
    Ding, L., Wendl, M.C., McMichael, J.F., et al.: Expanding the computational toolbox for mining cancer genomes. Nat. Rev. Genet. 15(8), 556–570 (2014)CrossRefGoogle Scholar
  6. 6.
    El-Kebir, M., Klau, G.W.: Solving the maximum-weight connected subgraph problem to optimality. CoRR abs/1409.5308 (2014)Google Scholar
  7. 7.
    Vandin, F., Upfal, E., Raphael, B.J.: Algorithms and genome sequencing: identifying driver pathways in cancer. Computer 45(3), 39–46 (2012)CrossRefGoogle Scholar
  8. 8.
    Fischetti, M., Leitner, M., Ljubic, I., et al.: Thinning out steiner trees: a node based model for uniform edge costs. Math. Progr. Comput. (2015, submitted)Google Scholar
  9. 9.
    Garraway, L.A., Lander, E.S.: Lessons from the cancer genome. Cell 153(1), 17–37 (2013)CrossRefGoogle Scholar
  10. 10.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)CrossRefGoogle Scholar
  11. 11.
    Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Publishing Co., Boston (1996)MATHGoogle Scholar
  12. 12.
    Hudson, T.J., Anderson, W., Aretz, A., et al.: International network of cancer genome projects. Nature 464(7291), 993–998 (2010)CrossRefGoogle Scholar
  13. 13.
    Johnson, D.S., Koch, T., Werneck, R.F., et al.: The eleventh dimacs implementation challenge.
  14. 14.
    Kim, Y.A., Cho, D.Y., Dao, P., et al.: Memcover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015)CrossRefGoogle Scholar
  15. 15.
    Kim, Y.A., Salari, R., Wuchty, S., et al.: Module cover-a new approach to genotype-phenotype studies. Pac. Symp. Biocomput. 135–146 (2013)Google Scholar
  16. 16.
    Kuo, T.W., Lin, K.C.J., Tsai, M.J.: Maximizing submodular set function with connectivity constraint: theory and application to networks. IEEE/ACM Trans. Netw. 23(2), 533–546 (2015)CrossRefGoogle Scholar
  17. 17.
    Lawrence, M.S., Stojanov, P., Polak, P., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457), 214–218 (2013)CrossRefGoogle Scholar
  18. 18.
    Leiserson, M.D., Vandin, F., Wu, H.T., et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47(2), 106–114 (2015)CrossRefGoogle Scholar
  19. 19.
    Ljubić, I., Weiskircher, R., Pferschy, U., et al.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Program. 105(2–3), 427–449 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    TCGA Network: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)CrossRefGoogle Scholar
  21. 21.
    Raphael, B.J., Dobson, J.R., Oesper, L., et al.: Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 6(1), 5 (2014)CrossRefGoogle Scholar
  22. 22.
    Schaefer, M.H., Fontaine, J.F., Vinayagam, A., et al.: Hippie: integrating protein interaction networks with experiment based quality scores. PLoS One 7(2), e31826 (2012)CrossRefGoogle Scholar
  23. 23.
    Shrestha, R., et al.: HIT’nDRIVE: multi-driver gene prioritization based on hitting time. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 293–306. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Ulitsky, I., Karp, R.M., Shamir, R.: Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 347–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004)CrossRefGoogle Scholar
  27. 27.
    Vogelstein, B., Papadopoulos, N., Velculescu, V.E.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013)CrossRefGoogle Scholar
  28. 28.
    Weinstein, J.N., Collisson, E.A., Mills, G.B., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113–1120 (2013)CrossRefGoogle Scholar
  29. 29.
    Wang, Y., Buchanan, A., Butenko, S.: On imposing connectivity constraints in integer programs (2015).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna Bomersbach
    • 1
  • Marco Chiarandini
    • 1
  • Fabio Vandin
    • 1
    • 2
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2.Department of Information EngineeringUniversity of PadovaPadovaItaly
  3. 3.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations