Role and Applications of Feruloyl Esterases in Biomass Bioconversion

  • Constantinos Katsimpouras
  • Io Antonopoulou
  • Paul Christakopoulos
  • Evangelos TopakasEmail author
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 3)


Ferulic acid esterases (FAEs) act synergistically with xylanases to hydrolyze the feruloylated decorations of the hemicellulosic fraction of cell wall material and therefore play a major role in the degradation of plant biomass. In this review, their role in plant biomass degradation, their production, classification, and structural determination are discussed. In addition, the production, physicochemical properties, and molecular biology of the different type of FAEs are presented, giving emphasis in their potential applications utilizing their hydrolytic and synthetic activity. A detailed map of the reaction systems used to date is demonstrated, underpinning the potential of these enzymes as biosynthetic tools in the synthesis of bioactive compounds for use in food and cosmeceutical industries.


Ferulic Acid Wheat Bran Lignocellulosic Biomass Sinapic Acid Sugar Beet Pulp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Paul Christakopoulos and Io Antonopoulou would like to thank the EU Framework 7 project OPTIBIOCAT for the financial support.


  1. Abokitse K, Wu M, Bergeron H, Grosse S, Lau PCK (2010) Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Appl Microbiol Biotechnol 87:195–203CrossRefGoogle Scholar
  2. Barbe C, Dubourdieu D (1998) Characterisation and purification of a cinnamate esterase from Aspergillus niger industrial pectinase preparation. J Sci Food Agric 78:471–478Google Scholar
  3. Barr KA, Hopkins SA, Sreekrishna K (1992) Protocol for efficient secretion of HAS developed from Pichia pastoris. Pharm Eng 12:48–51Google Scholar
  4. Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 45:88–96CrossRefGoogle Scholar
  5. Bartolome B, Faulds CB, Kroon PA, Waldron K, Gilbert HJ, Hazlewood G, Williamson G (1997a) An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (XylD) released a 5-5′ dihydrodimer (diferulic acid) from barley and wheat cell walls. Appl Environ Microbiol 63:208–212Google Scholar
  6. Bartolome B, Faulds CB, Williamson G (1997b) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25:285–288CrossRefGoogle Scholar
  7. Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci USA 103:11417–11422Google Scholar
  8. Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot JC, Asther M (2006) Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 314:1820–1827CrossRefGoogle Scholar
  9. Benoit I, Danchin EGJ, Bleinchodt RJ, de Vries RP (2008) Biotechnological applications and potential fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396CrossRefGoogle Scholar
  10. Blum DL, Kataeva IA, Li X-L, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351Google Scholar
  11. Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1992) Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 58:3762–3766Google Scholar
  12. Borneman WS, Ljungdahl LG, Hartley RD, Akin DE (1993) Feruloyl and p-coumaroyl esterases from the anaerobic fungus Neocallimastix strain MC-2: properties and functions in plant cell wall degradation. In: Coughland MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press, London and Chapel Hill, pp 85–102Google Scholar
  13. Braga CMP, da Silva Delabona P, da Silva Lima DJ, Paixão DAA, da Cruz Pradella JG, Farinas CS (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Biores Technol 170:316–324CrossRefGoogle Scholar
  14. Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133CrossRefGoogle Scholar
  15. Bunzel M, Ralph J, Funk C, Steinhart H (2005) Structural elucidation of new ferulic acid-containing phenolic dimers and trimmers isolated from maize bran. Tetrahedron Lett 46:5845–5850CrossRefGoogle Scholar
  16. Bunzel M, Ralph J, Brüning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem 54:6408–6418Google Scholar
  17. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46:22–31Google Scholar
  18. Caffal KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900CrossRefGoogle Scholar
  19. Castanares A, McCrae SI, Wood TM (1992) Purification and properties of a feruloyl/ρ -coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microb Technol 14:875–884Google Scholar
  20. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761CrossRefGoogle Scholar
  21. Colquhoun IJ, Ralet MC, Thibault JF, Faulds CB, Williamson G (1994) Structure identification of feruloylated oligosaccharides from sugar-beet pulp by NMR spectroscopy. Carbohydr Res 263:243–256Google Scholar
  22. Couto J, Karboune S, Mathew R (2010) Regioselective synthesis of feruloylated glycosides using the feruloyl esterase expressed in selected commercial multi-enzymatic preparations as biocatalysts. Biocatal Biotransform 28:235–244CrossRefGoogle Scholar
  23. Couto J, St-Louis R, Karboune S (2011) Optimization of feruloyl esterase-catalyzed synthesis of feruloylated oligosaccharides by response face methodology. J Mol Catal B Enzym 73:53–62CrossRefGoogle Scholar
  24. Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meesen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Env Microbiol 77:237–246CrossRefGoogle Scholar
  25. Crepin VF, Faulds CB, Connerton IF (2003a) A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. Biochem J 370:417–427Google Scholar
  26. Crepin VF, Faulds CB, Connerton IF (2003b) Production and characterization of the Talaromyces stipitatus feruloyl esterase FAEC in Pichia pastoris: identification of the nucleophilic serine. Protein Expr Purif 29:176–184Google Scholar
  27. Crepin VF, Faulds CB, Connerton IF (2004a) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652CrossRefGoogle Scholar
  28. Crepin VF, Faulds CB, Connerton IF (2004b) Identification of a type-D feruloyl esterase from Neurospora crassa. Appl Microbiol Biotechnol 63:567–570CrossRefGoogle Scholar
  29. Damásio ARL, Braga CMP, Brenelli LB, Citadini AP, Mandelli F, Cota J, de Almeida RF, Salvador VH, Paixao DAA, Segato F, Mercadante AZ, de Oliveira Neto M, do Santos WD, Squina FM (2013) Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl Microbiol Biotechnol 97:6759–6767CrossRefGoogle Scholar
  30. Debeire P, Khoune P, Jeltsch JM, Phalip V (2012) Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresour Technol 119:425–428Google Scholar
  31. de Oliveira DM, Finger-Texeira A, Mota TR, Salvador VH, Moreira-Vilar FC, Molinari HBC, Mitchell RAC, Marchiosi R, Ferrarese-Filho O, dos Santos WD (2014) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13:1224–1232 Google Scholar
  32. de Vries RP, Visser J (1999) Regulation of the feruloyl esterase (fae A) gene from Aspergillus niger. Appl Environ Microbiol 65:5500–5503Google Scholar
  33. de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RH, Faulds CB, Williamson G, van den Hombergh JP, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644Google Scholar
  34. de Vries RP, van Kuyk PA, Kester HCM, Visser J (2002) The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J 363:377–386CrossRefGoogle Scholar
  35. Dien BS, Ximenes EA, O’Bryan PJ, Moniruzzaman M, Li X-L, Balan V, Dale B, Cotta MA (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distiller’s grains and their conversion to ethanol. Biores Technol 99:5216–5225CrossRefGoogle Scholar
  36. Donaghy JA, Bronnenmeier K, Soto-Kelly PF, McKay AM (2000) Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. J Appl Microbiol 88:458–466Google Scholar
  37. Endler A, Persson S (2011) Cellulose synthases and synthesis in Arabidopsis. Mol Plant 4:199–211CrossRefGoogle Scholar
  38. Esteban-Torres M, Reverón I, Mancheño JM, de las Rivas B, Muñoz R (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79:5130–5136CrossRefGoogle Scholar
  39. Faulds CB (2010) What can feruloyl esterases do for us? Phytochem Rev 9:121–132CrossRefGoogle Scholar
  40. Faulds CB, Williamson G (1991) The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. J Gen Microbiol 137:2339–2345Google Scholar
  41. Faulds C, Williamson G (1993) Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem 17:349–359Google Scholar
  42. Faulds CB, Williamson G (1999) Review: the role of hydroxycinnamates in the plant cell wall. J Sci Food Agric 79:393–395CrossRefGoogle Scholar
  43. Faulds CB, Mandalari G, Lo Curto RB, Bisignano G, Christakopoulos P, Waldron KW (2006) Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl Microbiol Biotechnol 71:622–629Google Scholar
  44. Faulds CB, de Vries RP, Kroon PA, Visser J, Williamson G (1997) Influence of ferulic acid on the production of feruloyl esterases by Aspergillus niger. FEMS Microbiol Lett 157:239–244CrossRefGoogle Scholar
  45. Fazary AE, Ju YH (2008) The large-scale use of feruloyl esterases in industry. Biotechnol Mol Biol Rev 3:95–110Google Scholar
  46. Fazary AE, Hamad HA, Lee JC, Koskei T, Lee CK, Ju YH (2010) Expression of feruloyl esterase from Aspergillus awamori in Escherichia coli: characterization and crystal studies of the recombinant enzyme. Int J Biol Macromol 46:440–444CrossRefGoogle Scholar
  47. Ferreira LMA, Wood TM, Williamson G, Faulds CB, Hazlewood G, Gilbert HJ (1993) A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic binding domain. Biochem J 294:349–355CrossRefGoogle Scholar
  48. Fillingham IJ, Kroon PA, Williamson G, Gilbert HJ, Hazlewood GP (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J 343 Pt 1:215–224Google Scholar
  49. Ford CW, Hartley RD (1990) Cyclodimers of p-coumaric and ferulic acids in the cell walls of tropical grasses. J Sci Food Agric 50:29–43Google Scholar
  50. Fry SC (1983) Feruloylated pectins from the primary cell wall: their structure and possible functions. Planta 157:111–123CrossRefGoogle Scholar
  51. Fry SC, Willis SC, Paterson AEJ (2000) Intraprotoplasmic and wall-localised formation of arabinoxylan bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211:679–692CrossRefGoogle Scholar
  52. Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterization of 8-O-4/8-O4- and 8-8/8-O4-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66:363–371CrossRefGoogle Scholar
  53. Garcia-Conesa M-T, Crepin VF, Goldson AJ, Williamson G, Cummings NJ, Connerton IF, Faulds CB, Kroon PA (2004) The feruloyl esterase system of Talaromyces stipitatus: production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. J Biotechnol 108:227–241Google Scholar
  54. Garleb KA, Fahey GC Jr, Lewis SM, Kerley MS, Montgomery L (1988) Chemical composition and digestibility of fibre fractions of certain by-product feedstuffs fed to ruminants. J Anim Sci 66:2650–2662CrossRefGoogle Scholar
  55. Giuliani S, Piana C, Setti L, Hochkoeppler A, Pifferi PG, Williamson PG, Faulds CB (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol Lett 23:325–330CrossRefGoogle Scholar
  56. Goldstone DC, Villas-Bôas SG, Till M, Kelly WJ, Attwood GT, Arcus VL (2010) Structural and functional characterization of a promiscuous feruloyl esterase (Est1E) from the rumen bacterium Butyrivibrio proteoclasticus. Proteins 78:1457–1469Google Scholar
  57. Gong YY, Yin X, Zhang HM, Wu MC, Tang CD, Wang JQ, Pang QF (2013) Cloning, expression of a feruloyl esterase from Aspergillus usamii E001 and its applicability in generating ferulic acid from wheat bran. J Ind Microbiol Biotechnol 40:1433–1441CrossRefGoogle Scholar
  58. Gorke J, Srienc F, Kazlauskas R (2010) Towards advances ionic liquids. Polar enzyme-friendly solvents for biocatalysis. Biotechnol Bioproc Eng 15:40–53CrossRefGoogle Scholar
  59. Gottschalk LMF, Oliveira RA, da Silva Bon EP (2010) Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 51:72–78CrossRefGoogle Scholar
  60. Gottschalk LMF, de Sousa Paredes R, Teixeira RSS, da Silva ASA, da Silva Bon EP (2013) Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Braz J Microbiol 44:569–576CrossRefGoogle Scholar
  61. Grinna LS, Tschopp JF (1989) Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast 5:107–115CrossRefGoogle Scholar
  62. Haase-Aschoff P, Linke D, Berger RG (2013) Detection of feruloyl- and cinnamoyl esterases from basidiomycetes in the presence of interfering laccase. Bioresour Technol 130:231–238Google Scholar
  63. Hassan S, Hugouvieux-Cotte-Pattat N (2011) Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. J Bacteriol 193:963–970CrossRefGoogle Scholar
  64. Hegde S, Muralikrishna G (2009) Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World J Microbiol Biotechnol 25:1963–1969CrossRefGoogle Scholar
  65. Hemery Y, Lullien-Pellerin V, Rouau X, Abecassis J, Samson MF, Åman P, von Reding W, Spoerndli C, Barron C (2009) Biochemical markers: efficient tools for the assessment of wheat grain tissue proportions in milling fractions. J Cereal Sci 49:55–64CrossRefGoogle Scholar
  66. Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338:495–506CrossRefGoogle Scholar
  67. Holmquist M (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1:209–235CrossRefGoogle Scholar
  68. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45CrossRefGoogle Scholar
  69. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619CrossRefGoogle Scholar
  70. Lai K-K, Stogios PJ, Vu C, Xu X, Cui H, Molloy S, Savchenko A, Yakunin A, Gonzalez CF (2011) An inserted α/β subdomain shapes the catalytic pocket of Lactobacillus johnsonii cinnamoyl esterase. PLoS ONE 6(8):e23269Google Scholar
  71. Iiyama K, Lam TBT, Stone BA (1990) Phenolic acid bridges between polysaccharides and lignin in wheat internodes. Phytochemistry 29:733–737CrossRefGoogle Scholar
  72. Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127CrossRefGoogle Scholar
  73. Ishii T, Hiroi T, Thomas JR (1990) Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell-walls. Phytochemistry 29:1999–2003CrossRefGoogle Scholar
  74. Johnson KG, Silva MC, MacKenzie CR, Schneider H, Fontana JD (1989) Microbial degradation of hemicellulosic materials. Appl Biochem Biotechnol 20–21:245–258CrossRefGoogle Scholar
  75. Kanauchi M, Watanabe S, Tsukada T, Atta K, Kakuta T, Koizumi T (2008) Purification and characteristics of feruloyl esterase from Aspergillus awamori G-2 strain. J Food Sci 73:458–463CrossRefGoogle Scholar
  76. Katsimpouras C, Christakopoulos P, Topakas E (2014) Fermentation and enzymes. In: Varzakas T, Tzia C (eds) Food engineering handbook. CRC Press, Boca Raton, pp 495–497Google Scholar
  77. Kheder F, Delaunay S, Abo-Chameh G, Paris C, Muniglia L, Girardin M (2009) Production and biochemical characterization of a type B ferulic acid esterase from Streptomyces ambofaciens. Can J Microbiol 55:729–738Google Scholar
  78. Khmelnitsky YL, Hilhorst R, Veeger C (1988) Detergentless microemulsions as media for enzymatic reactions. Eur J Biochem 176:265–271CrossRefGoogle Scholar
  79. Kim Y, Hendrickson R, Mosier NS, Ladisch MR, Bals B, Balan V, Dale BE (2008) Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distiller’s grains at high-solids loadings. Biores Technol 99:5206–5215CrossRefGoogle Scholar
  80. Kin KL, Lorca GL, Gonzalez CF (2009) Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Appl Environ Microbiol 75:5018–5024CrossRefGoogle Scholar
  81. Knoshaug EP, Selig MJ, Baker JO, Decker SR, Himmel ME, Adney WS (2008) Heterologous expression of two ferulic acid esterases from Penicillium funiculosum. Appl Biochem Biotechnol 146:79–87CrossRefGoogle Scholar
  82. Koseki T, Furuse S, Iwano K, Matsuzawa H (1998) Purification and characterization of a feruloylesterase from Aspergillus awamori. Biosci Biotechnol Biochem 62:2032–2034Google Scholar
  83. Koseki T, Fushinobu S, Shirakawa AH, Komai M (2009) Occurrence, properties and application of feruloyl esterases. Appl Microbiol Biotechnol 84:803–810CrossRefGoogle Scholar
  84. Koseki T, Takahashi K, Fushinobu S, Iefuji H, Iwano K, Hashizume K, Matsuzawa H (2005) Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochim Biophys Acta—Gen Subj 1722:200–208Google Scholar
  85. Kroon PA, Williamson G (1996) Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger. Biotechnol Appl Biochem 23:263–267Google Scholar
  86. Kroon PA, Faulds CB, Brezillon C, Williamson G (1997) Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur J Biochem 248:245–251CrossRefGoogle Scholar
  87. Kroon PA, Williamson G, Fish NM, Archer DB, Belshaw NJ (2000) A modular esterase from Penicillium funiculosum which releases ferulic acid from plant cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur J Biochem 267:6740–6752CrossRefGoogle Scholar
  88. Kühnel S, Pouvreau L, Appeldoorn MM, Hinz SWA, Schols HA, Gruppen H (2012) The ferulic acid esterases of Chrysosporium lucknowense C1: purification, characterization and their potential application in biorefinery. Enzyme Microb Tech 50:77–85CrossRefGoogle Scholar
  89. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135CrossRefGoogle Scholar
  90. Larsen J, Østergaard Haven M, Thirup L (2012) Inbicon makes lignocellulosic ethanol a commercial reality. Biomass Bioenergy 46:36–45CrossRefGoogle Scholar
  91. Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429CrossRefGoogle Scholar
  92. Levasseur A, Gouret P, Lesage-Meessen L, Asther M, Asther M, Record E, Pontarotti P (2006) Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evol Biol 6:92CrossRefGoogle Scholar
  93. Li J, Cai S, Luo Y, Dong X (2011) Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 77:6141–6147CrossRefGoogle Scholar
  94. Linke D, Matthes R, Nimtz M, Zorn H, Bunzel M, Berger RG (2013) An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides. Appl Microbiol Biotechnol 97:7241–7251CrossRefGoogle Scholar
  95. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res 42:D490–D495CrossRefGoogle Scholar
  96. MacKenzie CR, Bilous D (1988) Ferulic acid esterase activity from Schizophyllum commune. Appl Environ Microbiol 54:1170–1173Google Scholar
  97. Mackenzie CR, Bilous D, Schneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839Google Scholar
  98. Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:1–12CrossRefGoogle Scholar
  99. Mandalari G, Bisignano G, Lo Curto RB, Waldron KW, Faulds CB (2008) Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Biores Technol 99:5130–5133CrossRefGoogle Scholar
  100. Mathew S, Abraham TE (2005) Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb Technol 36:565–570Google Scholar
  101. McClendon SD, Shin HD, Chen RR (2011) Novel bacterial ferulic acid esterase from Cellvibrio japonicus and its application in ferulic acid release and xylan hydrolysis. Biotechnol Lett 33:47–54Google Scholar
  102. McCrae SI, Leith KM, Gordon AH, Wood TM (1994) Xylan-degrading enzyme system produced by the fungus Aspergillus awamori: isolation and characterization of a feruloyl esterase and a p-coumaroyl esterase. Enzyme Microb Technol 16:826–834Google Scholar
  103. Moukouli M, Topakas E, Christakopoulos P (2008) Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Appl Microbiol Biotechnol 79:245–254CrossRefGoogle Scholar
  104. Mueller-Harvey I, Hartley RD, Harris J, Curzon EH (1986) Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw. Carbohydr Res 148:71–85CrossRefGoogle Scholar
  105. Mukherjee G, Singh RK, Mitra A, Sen SK (2007) Ferulic acid esterase production by Streptomyces sp. Biores Technol 98:211–213CrossRefGoogle Scholar
  106. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737CrossRefGoogle Scholar
  107. Nguyen D, Zhang X, Jiang ZH, Audet A, Paice MG, Renaud S, Tsang A (2008) Bleaching of kraft pulp by a commercial lipase: accessory enzymes degrade hexenuronic acids. Enz Microbial Technol 43:130–136CrossRefGoogle Scholar
  108. Nieter A, Haase-Aschoff P, Linke D, Nimtz M, Berger RG (2014) A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biol 118:348–357Google Scholar
  109. Nordkvisk E, Salomonsson AC, Amar P (1984) Distribution of insoluble bound phenolic acids in barley grain. J Sci Food Agric 35:657–661CrossRefGoogle Scholar
  110. Olivares- Hernández R, Sunner H, Frisvad JC, Olsson L, Nielsen J, Panagiotou G (2010) Combining substrate specificity analysis with support vector classifiers reveals feruloyl esterase as a phylogenetically informative protein group. PLoS ONE 5:e12781CrossRefGoogle Scholar
  111. Olsson L, Panagiotou G, Christakopoulos P, Topakas E, Olivares R (2011) Nutraceutical compounds: feruloyl esterases as biosynthetic tools. Encycl Biotechnol Agric Food 1:448–453Google Scholar
  112. Oosterveld A, Grabber JH, Beldman G, Ralph J, Voragen AGJ (1997) Formation of ferulic acid dehydrodimers through oxidative cross-linking of sugar beet pectin. Carbohydr Res 300:179–181CrossRefGoogle Scholar
  113. Panagiotou G, Granouillet P, Olsson L (2006) Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl Microbiol Biotechnol 72:1117–1124Google Scholar
  114. Poidevin L, Levasseur A, Paës G, Navarro D, Heiss-Blanquet S, Asther M, Record E (2009) Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applications. Lett Appl Microbiol 49:673–678CrossRefGoogle Scholar
  115. Prates JAM, Tarbouriech N, Charnock SJ, Fontes CMGA, Ferreira LMA, Davies GJ (2001) The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. Structure 9:1183–1190CrossRefGoogle Scholar
  116. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314CrossRefGoogle Scholar
  117. Qi M, Wang P, Selinger LB, Yanke LJ, Forster RJ, McAllister TA (2011) Isolation and characterization of a ferulic acid esterase (Fae1A) from the rumen fungus Anaeromyces mucronatus. J Appl Microbiol 110:1341–1350Google Scholar
  118. Rakotoarivonina H, Hermant B, Chabbert B, Touzel JP, Remond C (2011) A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 90:541–552CrossRefGoogle Scholar
  119. Ralph J, Quideau S, Grabber JH, Hatfield RD (1994) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin Trans 1:3485–3498CrossRefGoogle Scholar
  120. Ralph J, Grabber J, Hatfield RD (1995) Lignin-ferulate crosslinks in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res 275:167–178CrossRefGoogle Scholar
  121. Record E, Asther M, Sigoillot C, Pages S, Punt PJ, Delattre M, Haon M, van den Hondel CAMJJ, Sigoillot JC, Lesage-Meessen L, Asther M (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl Microbiol Biotechnol 62:349–355CrossRefGoogle Scholar
  122. Rouaou X, Cheynier V, Surget A, Gloux D, Barron C, Meudec E, Louis-Montero J, Criton M (2003) A dehydrotrimer of ferulic acid from maize bran. Phytochemistry 63:899–903CrossRefGoogle Scholar
  123. Rumbold K, Biely P, Mastihubova M, Gudelj M, Gubitz G, Robra K-H, Prior BA (2003) Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Appl Environ Microbiol 69:5622–5626Google Scholar
  124. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  125. Saulnier L, Vigouroux L, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253CrossRefGoogle Scholar
  126. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289CrossRefGoogle Scholar
  127. Schubot FD, Kataeva IA, Blum DL, Shah AK, Ljungdahl LG, Rose JP, Wand BC (2001) Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum. Biochemistry 40:12524–12532CrossRefGoogle Scholar
  128. Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Biores Technol 99:4997–5005CrossRefGoogle Scholar
  129. Shibuya N (1984) Phenolic acids and their carbohydrate esters in rice endosperm cell walls. Phytochemistry 23:2233–2237CrossRefGoogle Scholar
  130. Shin HD, Chen RR (2006) Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 38:478–485CrossRefGoogle Scholar
  131. Shin HD, Chen RR (2007) A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability. Appl Microbiol Biotechnol 73:1323–1330CrossRefGoogle Scholar
  132. Sigoillot C, Camareto S, Vidal T, Record E, Asther M, Boada MP, Martinze MJ, Sigoillot JC, Asther M, Colom JF, Martinez AT (2005) Comparison of different fungal enzymes from bleaching high-quality paper pulps. J Biotechnol 115:333–343CrossRefGoogle Scholar
  133. Smith MM, Hartley RD (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydr Res 118:65–80CrossRefGoogle Scholar
  134. Sultana R, Ravagna A, Mohmmad-Abdul H, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758CrossRefGoogle Scholar
  135. Suzuki K, Hori A, Kawamoto K, Thangudu RR, Ishida T, Igarashi K, Samejima M, Yamada C, Arakawa T, Wakagi T, Koseki T, Fushinobu S (2014) Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad. Proteins 82:2857–2867CrossRefGoogle Scholar
  136. Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulose xylanase and feruloyl esterase treatment. Enz Microbial Technol 39:897–902CrossRefGoogle Scholar
  137. Tai ES, Hsieh PC, Sheu SC (2014) Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochem 49:1274–1280CrossRefGoogle Scholar
  138. Tenkanen M, Schuseil J, Puls J, Poutanen K (1991) Production, purification and characterisation of an esterase liberating phenolic acids from lignocellulosics. J Biotechnol 18:69–84CrossRefGoogle Scholar
  139. Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. Bioresources 7:2220–2235CrossRefGoogle Scholar
  140. Thörn C, Gustafsson H, Olsson L (2011) Immobilization of feruloyl esterases in mesoporous materials leads to improved transesterification yield. J Mol Catal B Enzym 72:57–64CrossRefGoogle Scholar
  141. Topakas E, Christakopoulos P (2004) Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation. World J Microb Biot 20:245–250CrossRefGoogle Scholar
  142. Topakas E, Stamatis H, Mastihubova M, Biely P, Kekos D, Macris BJ, Christakopoulos P (2003a) Purification and characterization of a Fusarium oxysporum feruloyl esterase (FoFAE-I) catalysing transesterification of phenolic acid esters. Enz Microbial Technol 33:729–737CrossRefGoogle Scholar
  143. Topakas E, Stamatis H, Biely P, Kekos D, Macris BJ, Christakopoulos P (2003b) Purification and characterization of a feruloyl esterase from Fusarium oxysporum catalyzing esterification of phenolic acids in ternary water-organic solvent mixtures. J Biotechnol 102:33–44CrossRefGoogle Scholar
  144. Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003c) Production and partial characterization of feruloyl esterase by Sporotrichum thermophile under solid-state fermentation. Process Biochem 38:1539–1543CrossRefGoogle Scholar
  145. Topakas E, Stamatis H, Biely P, Christakopoulos P (2004) Purification and characterization of a type B feruloyl esterase (StFae-A) from the thermophilic fungus Sporotrichum thermophile. Appl Microbiol Biotechnol 63:686–690CrossRefGoogle Scholar
  146. Topakas E, Christakopoulos P, Faulds CB (2005a) Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates. J Biotechnol 115:355–366CrossRefGoogle Scholar
  147. Topakas E, Vafiadi C, Stamatis H, Christakopoulos P (2005b) Sporotrichum thermophile type C feruloyl esterase (StFaeC): purification, characterization and its use for phenolic acid (sugar) ester synthesis. Enz Microbial Technol 36:729–736CrossRefGoogle Scholar
  148. Topakas E, Vafiadi C, Christakopoulos P (2007) Microbial production, characterization and applications of feruloyl esterases. Proc Biochem 42:497–509CrossRefGoogle Scholar
  149. Topakas E, Moukouli M, Dimarogona M, Christakopoulos P (2012) Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Appl Microbiol Biotechnol 94:399–411CrossRefGoogle Scholar
  150. Tsuchiyama M, Sakamoto T, Fujita T, Murata S, Kawasaki H (2006) Esterification of ferulic acid with polyols using a ferulic acid esterase from Aspergillus niger. Biochim Biophys Acta 1760:1071–1079CrossRefGoogle Scholar
  151. Udatha DBRKG, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110CrossRefGoogle Scholar
  152. Uraji M, Arima J, Inoue Y, Harazono K, Hatanaka T (2014) Application of two newly identified and characterized feruloyl esterases from Streptomyces sp. in the enzymatic production of ferulic acid from agricultural biomass. PLoS ONE 9(8):e104584CrossRefGoogle Scholar
  153. Vafiadi C, Topakas E, Wong KKY, Suckling ID, Christakopoulos P (2005) Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) from Sporotrichum thermophile using alkyl ferulates. Tetrahydron: Asymmetry 16:373–379Google Scholar
  154. Vafiadi C, Topakas E, Christakopoulos P (2006a) Regioselective esterase-catalyzed feruloylation of L-arabinodiose. Carbohydr Res 341:1992–1997CrossRefGoogle Scholar
  155. Vafiadi C, Topakas E, Christakopoulos P, Faulds CB (2006b) The feruloyl esterase system of Talaromyces stipitatus: determining the hydrolytic and synthetic specificity of TsFaeC. J Biotechnol 125:210–221CrossRefGoogle Scholar
  156. Vafiadi C, Topakas E, Alderwick LJ, Besra GS, Christakopoulos P (2007a) Chemoenzymatic synthesis of feruloyl-D-arabinose as a potential anti-mycobacterial agent. Biotechnol Lett 29:1771–1774CrossRefGoogle Scholar
  157. Vafiadi C, Topakas E, Bakx EJ, Schols HA, Christakopoulos P (2007b) Structural characterization of ESI-MS of feruloylated arabino-oligosaccharides synthesized by chemoenzymatic esterification. Molecules 12:1367–1375CrossRefGoogle Scholar
  158. Vafiadi C, Topakas E, Alissandratos A, Faulds CB, Christakopoulos P (2008a) Enzymatic synthesis of butyl hydroxycinnamates and their inhibitory effect on LDL-oxidation. J Biotechnol 133:497–504CrossRefGoogle Scholar
  159. Vafiadi C, Topakas E, Christakopoulos P (2008b) Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates. J Mol Catal B Enzym 54:35–41CrossRefGoogle Scholar
  160. Vafiadi C, Topakas E, Nahmias VR, Faulds CB, Christakopoulos P (2009) Feruloyl esterase-catalyzed synthesis of glycerol sinapate using ionic liquid mixtures. J Biotechnol 139:124–129CrossRefGoogle Scholar
  161. Valls C, Colom JF, Baffert C, Gimbert I, Roncero MB (2010) Comparing the efficiency of the laccase-NHA and laccase-HBT systems in eucalyptus pulp bleaching. Biochem Eng J 49:401–407CrossRefGoogle Scholar
  162. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905CrossRefGoogle Scholar
  163. Várnai A, Tang C, Bengtsson O, Atterton A, Mathiesen G, Eijsink GH (2014) Expression of endoglucanases in Pichia pastoris under control of the GAP promoter. Microb Cell Fact 13:57CrossRefGoogle Scholar
  164. Vogt T (2010) Phenylpropanoid Biosynthesis. Mol Plant 3:2–20CrossRefGoogle Scholar
  165. Walton NJ, Narbad A, Faulds C, Williamson G (2000) Novel approaches to the biosynthesis of vanillin. Curr Opin Biotechnol 11:490–496CrossRefGoogle Scholar
  166. Wang X, Geng X, Egashira Y, Sanada H (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl Environ Microbiol 70:2367–2372Google Scholar
  167. Wang L, Zhang R, Ma Z, Wang H, Ng T (2014) A feruloyl esterase (FAE) characterized by relatively high thermostability from the edible mushroom Russula virescens. Appl Biochem Biotechnol 172:993–1003Google Scholar
  168. Wong D (2008) Enzymatic deconstruction of backbone structures of the ramified regions in pectins. Protein J 27:30–42CrossRefGoogle Scholar
  169. Wong DWS, Chan VJ, Batt SB, Sarath G, Liao H (2011) Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass. J Ind Microbiol Biotechnol 38:1961–1967CrossRefGoogle Scholar
  170. Wong DWS, Chan VJ, Liao H, Zidwick MJ (2013) Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases. J Ind Microbiol Biotechnol 40:287–295CrossRefGoogle Scholar
  171. Wu M, Abokitse K, Grosse S, Leisch H, Lau PCK (2012) New feruloyl esterases to access phenolic acids from grass biomass. Appl Biochem Biotechnol 168:129–143CrossRefGoogle Scholar
  172. Yang SQ, Tang L, Yan QJ, Zhou P, Xu HB, Jiang ZQ, Zhang P (2013) Biochemical characteristics and gene cloning of a novel thermostable feruloyl esterase from Chaetomium sp. J Mol Catal B Enzym 97:328–336CrossRefGoogle Scholar
  173. Yao J, Chen QL, Shen AX, Cao W, Liu YH (2013) A novel feruloyl esterase from a soil metagenomic library with tannase activity. J Mol Catal B Enzym 95:55–61CrossRefGoogle Scholar
  174. Yu P, Maenz DD, McKinnon JJ, Racz VJ, Christensen DA (2002a) Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 50:1625–1630CrossRefGoogle Scholar
  175. Yu P, McKinnon JJ, Maenz DD, Racz VJ, Christensen DA (2002b) The interactive effects of enriched sources of Aspergillus ferulic acid esterase and Trichoderma xylanase on the quantitative release of hydroxycinnamic acids from oat hulls. Can J Anim Sci 82:251–257CrossRefGoogle Scholar
  176. Yu P, McKinnon JJ, Maenz DD, Olkowski AA, Racz VJ, Christensen DA (2003) Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase. J Agric Food Chem 51:218–223CrossRefGoogle Scholar
  177. Zeng Y, Yin X, Wu MC, Yu T, Feng F, Zhu TD, Pang QF (2014) Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. J Mol Catal B Enzym 110:140–146CrossRefGoogle Scholar
  178. Zeuner B, Stahlberg T, van Buu ON, Kurov-Kruse AJ, Riisager A, Meyer AS (2011) Dependency of the hydrogen bonding capacity of the solvent anion on the thermal stability of feruloyl esterases in ionic liquid systems. Green Chem 13:1550–1557CrossRefGoogle Scholar
  179. Zhang SB, Zhai HC, Wang L, Yu GH (2013) Expression, purification and characterization of a feruloyl esterase A from Aspergillus flavus. Prot Expr Pur 92:36–40CrossRefGoogle Scholar
  180. Zwane EN, Rose SH, Van Zyl WH, Rumbold K, Viljoen-Bloom M (2014) Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material. J Ind Microbiol Biotechnol 41:1027–1034Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Constantinos Katsimpouras
    • 1
  • Io Antonopoulou
    • 2
  • Paul Christakopoulos
    • 2
  • Evangelos Topakas
    • 1
    Email author
  1. 1.Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleaSweden

Personalised recommendations