Advertisement

Microbial Enzymes for Conversion of Biomass to Bioenergy

  • M. P. Raghavendra
  • S. Chandra NayakaEmail author
  • Vijai Kumar Gupta
Chapter
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 3)

Abstract

Microbial enzymes are capable of degrading a wide range of complex substrates including carbohydrates into more useful energy source. The simple sugars then can be converted into ethanol or other liquid biofuels by a large group of fermentative microbes. Even though cellulose serves as an abundant source of carbon and energy in the ecosystem, its exploitation as a source of biofuel is hindered due to lack of effective microbial systems to break it down, including other carbohydrates to simple sugars leading to more production of biofuels. If these materials could be exploited, they would represent a massive new energy resource for biofuel production. In continuous search for alternative energy sources, it is now proven that electricity can be produced directly from the degradation of organic matter in a microbial fuel cell and fermentation of lignocellulosic biomass to ethanol, which is an attractive route to fuels that supplements the fossil fuels. Studies have revealed that special group enzymes known as feruloyl esterases produced by microorganisms are capable of breaking apart key links between the polymers and helps in effective degradation of plant materials. This review covers various known microbial approaches to convert different carbon sources to simple soluble sugars en route to production of biofuels. The importance of the biofuel in future is highlighted by the Renewable Fuel Standard of the United States Energy Independence and Security Act (EISA) of 2007, which mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feed stocks. It is obvious fact that microorganisms and its array of enzymes need to be effectively screened, identified and employed in developing effective strategies for converting biomass to biofuel.

Keywords

Lignocellulosic Biomass Glycoside Hydrolase Cellulolytic Enzyme Ankyrin Repeat Carbohydrate Binding Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aksel T, Barrick D (2009) Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Methods Enzymol 455:95–125CrossRefGoogle Scholar
  2. Aksel T, Majumdar A, Barrick D (2011) The contribution of entropy, enthalpy, and hydrophobic desolvation to cooperativity in repeat-protein folding. Structure 19:349–360CrossRefGoogle Scholar
  3. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4–15CrossRefGoogle Scholar
  4. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg. Res. 3:82–92CrossRefGoogle Scholar
  5. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554CrossRefGoogle Scholar
  6. Bayer EA, Shoham Y, Lamed R (2013) The prokaryotes: lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, pp 216–266Google Scholar
  7. Beeson WT, Phillips CM, Cate JHD, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892CrossRefGoogle Scholar
  8. Belaich JP, Tardif C, Belaich A, Gaudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14CrossRefGoogle Scholar
  9. Berrin JG, Czjzek M, Kroon PA, McLauchlan WR, Puigserver A, Williamson G, Juge N (2003) Sub- strate (aglycone) specificity of human cytosolic beta-glucosidase. Biochem J 373:41–48CrossRefGoogle Scholar
  10. Betton JM, Jacob JP, Hofnung M, Broome-Smith JK (1997) Creating a bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding protein. Nat Biotechnol 15:1276–1279CrossRefGoogle Scholar
  11. Bisaria VS (1991) Bioprocessing of agro-residues to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 210–213Google Scholar
  12. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217CrossRefGoogle Scholar
  13. Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes: nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381–388CrossRefGoogle Scholar
  14. Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Yang S-J, Resch MG, Adams MMW, Lunin VV, Michael E, Himmel ME, Yannick J, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342:1513–1516CrossRefGoogle Scholar
  15. Cai Z, Xing G, Yan X, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196:7–14CrossRefGoogle Scholar
  16. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238CrossRefGoogle Scholar
  17. Cantarel BL, Lombard V, Henrissat B (2012) Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 7(6):121–131CrossRefGoogle Scholar
  18. Cha M, Daehwan C, James GE, Adam MG, Janet W (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 6:85–93CrossRefGoogle Scholar
  19. Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama J, Takahashi H, Kitamoto K (2010) Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus SWO1. Appl Environ Microbiol 76:2556–2561CrossRefGoogle Scholar
  20. Cutler TA, Mills BM, Lubin DJ, Chong LT, Loh SN (2009) Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains. J Mol Biol 386:854–868CrossRefGoogle Scholar
  21. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotech. Bioeng. 95:904–910CrossRefGoogle Scholar
  22. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme L, Huang Y, Zhou J, Bayer EA (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genom 13:210–223CrossRefGoogle Scholar
  23. Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345CrossRefGoogle Scholar
  24. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392(6674):353–358CrossRefGoogle Scholar
  25. Deka D, Jawed M, Goyal A (2013) Purification and characterization of an alkaline cellulase produced by Bacillus subtilis (AS3). Prep Biochem Biotechnol 43:256–270CrossRefGoogle Scholar
  26. Den HR, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94CrossRefGoogle Scholar
  27. Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R (1999) A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 181:6720–6729Google Scholar
  28. Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R (2000) A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182:4915–4925CrossRefGoogle Scholar
  29. Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocelluloses. Enz Microb Technol 31:353–364CrossRefGoogle Scholar
  30. Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681CrossRefGoogle Scholar
  31. Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH (2011) Cleavage of cellulose by a CBM33 protein. Prot Sci 20:1479–1483CrossRefGoogle Scholar
  32. Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141CrossRefGoogle Scholar
  33. Fujita Y, Iro J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212CrossRefGoogle Scholar
  34. Gal L, Pages S, Gaudin C, Belaich A, Reverbel-Leroy C, Tardif C, Belaich JP (1997) Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 63:903–909Google Scholar
  35. Gao D, Uppugundla N, Shishir P, Chundawat S, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5–16CrossRefGoogle Scholar
  36. Garcia-Alvarez B, Melero R, Dias FM, Prates JA, Fontes CM, Smith SP, Romao MJ, Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA (2013) A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 6:182–200CrossRefGoogle Scholar
  37. Gladden JM, Allgaier M, Miller CS, Hazen TC, Vander Gheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812 Google Scholar
  38. Hamilton-Brehm SD, Mosher JJ, Vishnivetskaya T, Podar M, Carroll S, Allman S, Phelps TJ, Keller M, Elkins JG (2010) Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park. Appl Environ Microbiol 76:1014–1020CrossRefGoogle Scholar
  39. Hehemann J, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912CrossRefGoogle Scholar
  40. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45–59CrossRefGoogle Scholar
  41. Howell JA, Stuck JD (1975) Kinetics of solka floc cellulose hydrolysis by Trichoderma viride cellulase. Biotechnol Bioeng 17:873–893CrossRefGoogle Scholar
  42. Ito J, Kosugi A, Tanaka T, Kuroda K, Shibasaki S, Ogino C, Ueda M, Fukuda H, Doi RH, Kondo A (2009) Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl Environ Microbiol 75:4149–4154CrossRefGoogle Scholar
  43. Jacobson F, Karkehabadi S, Hansson H, Goedegebuur F, Wallace L, Mitchinson C, Piens K, Stals I, Sandgren M (2013) The crystal structure of the core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolutions. PLoS ONE 8(9):e70562CrossRefGoogle Scholar
  44. Jäger G, Girfoglio M, Dollo F, Rinaldi R, Bongard H, Commandeur U, Fischer R, Spiess AC, Büchs J (2011) How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis. Biotechnol Biofuels 4:33–49CrossRefGoogle Scholar
  45. Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42–51CrossRefGoogle Scholar
  46. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y (2005) Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106CrossRefGoogle Scholar
  47. Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243CrossRefGoogle Scholar
  48. King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM (2009) An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol Bioeng 102:1033–1044CrossRefGoogle Scholar
  49. Kostylev M, Wilson D (2012) Synergistic interactions in cellulose hydrolysis. Biofuels 3(1):61–70CrossRefGoogle Scholar
  50. Kristensen JB, Boijesson J, Brunn MH, Tjerneld F, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocelluloses. Enz Micro Technol 40:888–895CrossRefGoogle Scholar
  51. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspective. J Ind Microbiol Biotechnol 35:377–391CrossRefGoogle Scholar
  52. Lamed R, Setter E, Bayer EA (1983a) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836Google Scholar
  53. Lamed R, Setter E, Kenig R, Bayer EA (1983b) The cellulosome—a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181Google Scholar
  54. Li XL, Spanikova S, de Vries RP, Biely P (2007) Identification of genes encoding microbial glucuronoyl esterases. FEBS Lett 581(21):4029–4035CrossRefGoogle Scholar
  55. Li J, Cai S, Dong X (2011) Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 77(17):6141–6147CrossRefGoogle Scholar
  56. Li X, Beeson WT, Phillips CM, Marletta MA, Cate JHD (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20:1051–1061CrossRefGoogle Scholar
  57. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  58. Lynd LR, Laser MS, Bransby D, Dale BE, Davidson B, Hamilton R, Himmel ME, Keller M, McMillan JD, Sheehan J (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172CrossRefGoogle Scholar
  59. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516CrossRefGoogle Scholar
  60. Mansfield MC, Touhy M, Saddler J (1998) The effect of the initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Biores Technol 64:113–119CrossRefGoogle Scholar
  61. Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP (2008) Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol 99:1417–1424CrossRefGoogle Scholar
  62. Mayer F, Coughlan MP, Mori Y, Ljungdahl LG (1987) Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl Environ Microbiol 53:2785–2792Google Scholar
  63. McMillan JD, Jenning EW, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotech Biofuels 4:29–46CrossRefGoogle Scholar
  64. McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cellwall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578CrossRefGoogle Scholar
  65. Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15–27CrossRefGoogle Scholar
  66. Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1:00285–00210Google Scholar
  67. Moser F, Irwin D, Chen SL, Wilson DB (2008) Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 100:1066–1077CrossRefGoogle Scholar
  68. Nair NU, Denard CA, Zhao H (2010) Engineering of enzymes for selective catalysis. Curr Org Chem 14:1870–1882CrossRefGoogle Scholar
  69. Nakatani Y, Yamada K, Ogino C, Kondo A (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Fact 12:66–73CrossRefGoogle Scholar
  70. Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci Biotechnol Biochem 64:254–260CrossRefGoogle Scholar
  71. Phillips CM, Beeson WT, Cate JH, Marletta MA (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406CrossRefGoogle Scholar
  72. Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JCN, Johansen KS, Krogh K, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona CP, Dupree WP, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084CrossRefGoogle Scholar
  73. Ranjan KK (2014) Adsorption, diffusion and activity of polycatalytic cellulase-nanoparticle conjugates. Ph.D Dissertations. University of ConnecticutGoogle Scholar
  74. Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6:1858–1867CrossRefGoogle Scholar
  75. Rincon MT, Ding SY, McCrae SI, Martin JC, Aurilia V, Lamed R, Shoham Y, Bayer EA, Flint HJ (2003) Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J Bacteriol 185:703–713CrossRefGoogle Scholar
  76. Rincon MT, Martin JC, Aurilia V, McCrae SI, Rucklidge GJ, Reid MD, Bayer EA, Lamed R, Flint HJ (2004) ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome. J Bacteriol 186:2576–2585CrossRefGoogle Scholar
  77. Rincon MT, Dassa B, Flint HJ, Travis AJ, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM, Antonopoulos DA, Berg Miller ME, White BA (2010) Abundance and diversity of dockerin-containing proteins in the fiberdegrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS ONE 5:e12476CrossRefGoogle Scholar
  78. Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211CrossRefGoogle Scholar
  79. Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605CrossRefGoogle Scholar
  80. Scott BR, Hill C, Tomashek J, Liu C (2009) Enzymatic hydrolysis of lignocellulosic feedstocks using accessory enzymes. United States Patent Application 2009/0061484, 5 Mar 2009Google Scholar
  81. Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316CrossRefGoogle Scholar
  82. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295CrossRefGoogle Scholar
  83. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  84. Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts 2:244–263CrossRefGoogle Scholar
  85. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738Google Scholar
  86. Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861CrossRefGoogle Scholar
  87. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal genetic and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci USA 107:7503–7508CrossRefGoogle Scholar
  88. Turner MB, Spear SK, Huddleston JG, Holbrey JD, Rogers RD (2003) Ionic liquid salt-induced inactivation and unfolding of cellulose from Trichoderma reesei. Green Chem 5:443–447CrossRefGoogle Scholar
  89. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsinkm VGH (2005) The noncatalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497CrossRefGoogle Scholar
  90. Valaskova V, Baldrian P (2006) Degradation of cellulose and hemicelluloses by the brown rot fungus Piptoporus betulinus production of extracellular enzymes and characterization of the major cellulases. Microbiol 152:3613–3619CrossRefGoogle Scholar
  91. Van RP, Van ZWH (1998) Pretorius IS: engineering yeast for efficient cellulose degradation. Yeast 14:67–76CrossRefGoogle Scholar
  92. Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA (2013) A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnol Biofuels 6:182–200CrossRefGoogle Scholar
  93. Wang Y, Tang R, Tao J, Gao G, Wang X, Mu Y, Feng Y (2011) Quantitative investigation of non-hydrolytic disruptive activity on crystalline cellulose and application to recombinant swollenin. Appl Microbiol Biotechnol 91:353–1363CrossRefGoogle Scholar
  94. Weber S, Stubner S, Conrad R (2001) Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl Environ Microbiol 67:1318–1327CrossRefGoogle Scholar
  95. Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–1260CrossRefGoogle Scholar
  96. Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VGH, Igarashi K, Samejima M, Ståhlberg J, Horn SJ, Sandgren M (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal dependent oxidative enzyme that cleaves cellulose. PLoS ONE 6(11):e27807CrossRefGoogle Scholar
  97. Wetzel SK, Settanni G, Kenig M, Binz HK, Pluckthun A (2008) Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J Mol Biol 376:241–257CrossRefGoogle Scholar
  98. Whitney SE, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22:327–334CrossRefGoogle Scholar
  99. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299CrossRefGoogle Scholar
  100. Wongwilaiwalina S, Rattanachomsria U, Laothanachareona T, Eurwilaichitra L, Igarashib Y, Champredaa V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb Tech 47:283–290CrossRefGoogle Scholar
  101. Wooley R, Ruth M, Glassner D, Sheejan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803CrossRefGoogle Scholar
  102. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  103. Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, Lamed R (2003) The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185:4548–4557CrossRefGoogle Scholar
  104. Xu Q, Bayer EA, Goldman M, Kenig R, Shoham Y, Lamed R (2004) Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface anchoring scaffoldin and a family 48 cellulase. J Bacteriol 186:968–977CrossRefGoogle Scholar
  105. Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31(6):754–763CrossRefGoogle Scholar
  106. Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75:4762–4769CrossRefGoogle Scholar
  107. Zambare VP, Zambare A, Muthukumarappan K, Christopher LP (2011) Potential of thermostable cellulases in the bioprocessing of switchgrass to ethanol. BioResources 6:2004–2020Google Scholar
  108. Zweifel ME, Barrick D (2001) Studies of the ankyrin repeats of the Drosophila melanogaster Notch receptor. 2. Solution stability and cooperativity of unfolding. Biochemistry 40:14357–14367CrossRefGoogle Scholar
  109. Zweifel ME, Leahy DJ, Hughson FM, Barrick D (2003) Structure and stability of the ankyrin domain of the Drosophila Notch receptor. Protein Sci 12:2622–2632CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. P. Raghavendra
    • 1
  • S. Chandra Nayaka
    • 2
    Email author
  • Vijai Kumar Gupta
    • 3
  1. 1.Postgraduate Department of MicrobiologyMaharani’s Science College for WomenMysoreIndia
  2. 2.Department of Studies in BiotechnologyUniversity of MysoreMysoreIndia
  3. 3.Department of Biochemistry, School of Natural SciencesNational University of IrelandGalwayIreland

Personalised recommendations