CONTROLO 2016 pp 117-127 | Cite as

A New Robust Control Scheme for LTV Systems Using Output Integral Discrete Synergetic Control Theory

  • Saeid Rastegar
  • Rui Araújo
  • Alireza Emami
  • Abdelhamid Iratni
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 402)

Abstract

This paper presents a new robust control strategy based on a synergetic control theory (SCT) approach for linear time varying (LTV) systems in the presence of unknown persistent disturbance. The proposed control scheme is featured by an integral type of SCT driving the system towards a macro-variable manifold based on output error. The proposed control methodology guarantees robust stability for LTV systems, affected by unmeasured bounded additive disturbances. Robust stability analysis proves that the error trajectory monotonically converges to the SCT macro-variable manifold. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance is demonstrated through an example of reactor temperature control of Continuous Stirred Tank Reactor (CSTR) plant.

Notes

Acknowledgments

Saeid Rastegar was supported by Fundação para a Ciência e a Tecnologia (FCT) under grant SFRH/BD/89186/2012. The authors acknowledge the support of FCT project UID/EEA/00048/2013. A. Iratni was supported by the European Commission in the framework of the Erasmus Mundus—Al Idrisi II programme.

References

  1. 1.
    Shamma, J.S.: An overview of lpv systems. In: Mohammadpour, J., Scherer, C.W. (eds.) Control of Linear Parameter Varying Systems with Applications, pp. 3–26. Springer, New York, NY, USA (2012)CrossRefGoogle Scholar
  2. 2.
    Bünte, T., Odenthal, D., Aksun-Güvenç, B., Güvenç, L.: Robust vehicle steering control design based on the disturbance observer. Ann. Rev. Control 26(1), 139–149 (2002)CrossRefGoogle Scholar
  3. 3.
    Ugrinovskii, V.A.: Robust controllability of linear stochastic uncertain systems. Automatica 41(5), 807–813 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., Chriette, A.: New predictive scheme for the control of lti systems with input delay and unknown disturbances. Automatica 52, 179–184 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fiter, C., Hetel, L., Perruquetti, W., Richard, J.P.: A robust stability framework for LTI systems with time-varying sampling. Automatica 54, 56–64 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1992 (2014)CrossRefGoogle Scholar
  7. 7.
    Khandekar, A.A., Patre, B.M.: Discrete sliding mode control for robust tracking of time-delay systems. Syst. Sci. Control Eng. Open Access J. 2(1), 457–464 (2014)CrossRefGoogle Scholar
  8. 8.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press (1998)Google Scholar
  9. 9.
    Fridman, L.M.: Chattering analysis in sliding mode systems with inertial sensors. Int. J. Control 76(9–10), 906–912 (2003)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Romdhane, N.M.B., Damak, T.: Higher order sliding mode control of uncertain robot manipulators. In: Azar, A.T., Zhu, Q. (eds.) Advances and Applications in Sliding Mode Control Systems, pp. 327–352. Springer, Cham, Switzerland (2015)Google Scholar
  11. 11.
    Santi, E., Monti, A., Li, D., Proddutur, K., Dougal, R.A.: Synergetic control for DC-DC boost converter: implementation options. IEEE Trans. Ind. Appl. 39(6), 1803–1813 (2003)CrossRefGoogle Scholar
  12. 12.
    Santi, E., Monti, A., Li, D., Proddutur, K., Dougal, R.A.: Synergetic control for power electronics applications: a comparison with the sliding mode approach. J. Circ. Syst. Comput. 13(04), 737–760, Aug 2004Google Scholar
  13. 13.
    Jiang, Z.: Design of a nonlinear power system stabilizer using synergetic control theory. Electric Power Syst. Res. 79(6), 855–862 (2009)CrossRefGoogle Scholar
  14. 14.
    Bai, Q., Niu, D., Bai, J.: Complex networks economy systems engineering in general synergetic structure. Syst. Eng. Proc. 4, 252–258 (2012)CrossRefGoogle Scholar
  15. 15.
    Sinha, N.K., Rózsa, P.: Some canonical forms for linear multivariable systems. Int. J. Control 23(6), 865–883 (1976)CrossRefMATHGoogle Scholar
  16. 16.
    Antsaklis, P.J., Michel, A.N.: A Linear Systems Primer. Birkhäuser (2007)Google Scholar
  17. 17.
    Täth, R.: Modeling and Identification of Linear Parameter-Varying Systems. Springer, Berlin, Germany (2010)CrossRefGoogle Scholar
  18. 18.
    Xu, Q., Li, Y.: Micro-/nanopositioning using model predictive output integral discrete sliding mode control. IEEE Trans. Ind. Electron. 59(2), 1161–1170 (2012)CrossRefGoogle Scholar
  19. 19.
    Morningred, J.D., Paden, B.E., Seborg, D.E., Mellichamp, D.A.: An adaptive nonlinear predictive controller. Chem. Eng. Sci. 47(4), 755–762 (1992)CrossRefGoogle Scholar
  20. 20.
    Eun, Y., Kim, J.H., Kim, K., Cho, D.I.: Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism. IEEE Trans. Control Syst. Technol. 7(4), 414–423, Jul 1999Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Saeid Rastegar
    • 1
  • Rui Araújo
    • 1
  • Alireza Emami
    • 1
  • Abdelhamid Iratni
    • 1
    • 2
  1. 1.Department of Electrical and Computer Engineering (DEEC-UC)Institute of Systems and Robotics (ISR-UC), University of CoimbraCoimbraPortugal
  2. 2.Faculty of Science and Technology, Electrical Engineering DepartmentUniversity of Bordj Bou ArreridjEl AnasserAlgeria

Personalised recommendations