Advertisement

User-Centered Planning

  • Pascal Bercher
  • Daniel Höller
  • Gregor Behnke
  • Susanne Biundo
Chapter
Part of the Cognitive Technologies book series (COGTECH)

Abstract

User-centered planning capabilities are core elements of Companion-Technology. They are used to implement the functional behavior of technical systems in a way that makes those systems Companion-able—able to serve users individually, to respect their actual requirements and needs, and to flexibly adapt to changes in their situation and environment. This chapter presents various techniques we have developed and integrated to realize user-centered planning. They are based on a hybrid planning approach that combines key principles also humans rely on when making plans: stepwise refining complex tasks into executable courses of action and considering causal relationships between actions. Since the generated plans impose only a partial order on actions, they allow for a highly flexible execution order as well. Planning for Companion-Systems may serve different purposes, depending on the application for which the system is created. Sometimes, plans are just like control programs and executed automatically in order to elicit the desired system behavior; but sometimes they are made for humans. In the latter case, plans have to be adequately presented and the definite execution order of actions has to coincide with the user’s requirements and expectations. Furthermore, the system should be able to smoothly cope with execution errors. To this end, the plan generation capabilities are complemented by mechanisms for plan presentation, execution monitoring, and plan repair.

Notes

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

References

  1. 1.
    Alford, R., Shivashankar, V., Kuter, U., Nau, D.S.: HTN problem spaces: structure, algorithms, termination. In: Proceedings of the 5th Annual Symposium on Combinatorial Search (SoCS), pp. 2–9. AAAI Press, Palo Alto (2012)Google Scholar
  2. 2.
    Alford, R., Shivashankar, V., Kuter, U., Nau, D.: On the feasibility of planning graph style heuristics for HTN planning. In: Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS), pp. 2–10. AAAI Press, Palo Alto (2014)Google Scholar
  3. 3.
    Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning. In: Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS), pp. 7–15. AAAI Press, Palo Alto (2015)Google Scholar
  4. 4.
    Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning with task insertion. In: Proceedings of the 25th International Joint Conference on AI (IJCAI), pp. 1502–1508. AAAI Press, Palo Alto (2015)Google Scholar
  5. 5.
    Behnke, G., Höller, D., Biundo, S.: On the complexity of HTN plan verification and its implications for plan recognition. In: Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS), pp. 25–33. AAAI Press, Palo Alto (2015)Google Scholar
  6. 6.
    Behnke, G., Ponomaryov, D., Schiller, M., Bercher, P., Nothdurft, F., Glimm, B., Biundo, S.: Coherence across components in cognitive systems – one ontology to rule them all. In: Proceedings of the 25th International Joint Conference on AI (IJCAI), pp. 1442–1449. AAAI Press, Palo Alto (2015)Google Scholar
  7. 7.
    Behnke, G., Höller, D., Bercher, P., Biundo, S.: Change the plan - how hard can that be? In: Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS), pp. 38–46. AAAI Press, Palo Alto (2016)Google Scholar
  8. 8.
    Bercher, P., Biundo, S.: A heuristic for hybrid planning with preferences. In: Proceedings of the 25th International Florida AI Research Society Conference (FLAIRS), pp. 120–123. AAAI Press, Palo Alto (2012)Google Scholar
  9. 9.
    Bercher, P., Höller, D.: Interview with David E. Smith. Künstliche Intelligenz 30, 101–105 (2016). doi:10.1007/s13218-015-0403-yCrossRefGoogle Scholar
  10. 10.
    Bercher, P., Geier, T., Biundo, S.: Using state-based planning heuristics for partial-order causal-link planning. In: Advances in AI, Proceedings of the 36th German Conference on AI (KI), pp. 1–12. Springer, Berlin (2013)Google Scholar
  11. 11.
    Bercher, P., Geier, T., Richter, F., Biundo, S.: On delete relaxation in partial-order causal-link planning. In: Proceedings of the 25th International Conference on Tools with AI (ICTAI), pp. 674–681. IEEE Computer Society, New York (2013)Google Scholar
  12. 12.
    Bercher, P., Biundo, S., Geier, T., Hörnle, T., Nothdurft, F., Richter, F., Schattenberg, B.: Plan, repair, execute, explain - how planning helps to assemble your home theater. In: Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS), pp. 386–394. AAAI Press, Palo Alto (2014)Google Scholar
  13. 13.
    Bercher, P., Keen, S., Biundo, S.: Hybrid planning heuristics based on task decomposition graphs. In: Proceedings of the 7th Annual Symposium on Combinatorial Search (SoCS), pp. 35–43. AAAI Press, Palo Alto (2014)Google Scholar
  14. 14.
    Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D., Behnke, G., Nothdurft, F., Honold, F., Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home theater. In: Proceedings of the 29th National Conference on Artificial Intelligence (AAAI), pp. 4264–4265. AAAI Press, Palo Alto (2015)Google Scholar
  15. 15.
    Bercher, P., Höller, D., Behnke, G., Biundo, S.: More than a name? On implications of preconditions and effects of compound HTN planning tasks. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI 2016), pp. 225–233. IOS Press (2016)Google Scholar
  16. 16.
    Bertrand, G., Nothdurft, F., Honold, F., Schüssel, F.: CALIGRAPHI-creation of adaptive dialogues using a graphical interface. In: 35th Annual Computer Software and Applications Conference (COMPSAC), pp. 393–400. IEEE, New York (2011)Google Scholar
  17. 17.
    Bidot, J., Schattenberg, B., Biundo, S.: Plan repair in hybrid planning. In: Advances in AI, Proceedings of the 31st German Conference on AI (KI), pp. 169–176. Springer, Berlin (2008)Google Scholar
  18. 18.
    Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary report on combining state abstraction and HTN planning). In: Proceedings of the 6th European Conference on Planning (ECP), pp. 157–168. AAAI Press, Palo Alto (2001)Google Scholar
  19. 19.
    Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems. Künstliche Intelligenz 30, 71–75 (2016). doi:10.1007/s13218-015-0414-8CrossRefGoogle Scholar
  20. 20.
    Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user assistance based on AI planning. Cogn. Syst. Res. 12(3–4), 219–236 (2011); Special Issue on Complex CognitionGoogle Scholar
  21. 21.
    Biundo, S., Höller, D., Schattenberg, B., Bercher, P.: Companion-technology: an overview. Künstliche Intelligenz 30, 11–20 (2016). doi:10.1007/s13218-015-0419-3CrossRefGoogle Scholar
  22. 22.
    Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell. 94(1–2), 165–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Edelkamp, S.: On the compilation of plan constraints and preferences. In: Proceedings of the 16th International Conference on Automated Planning and Scheduling (ICAPS), pp. 374–377. AAAI Press, Palo Alto (2006)Google Scholar
  24. 24.
    Elkawkagy, M., Schattenberg, B., Biundo, S.: Landmarks in hierarchical planning. In: Proceedings of the 20th European Conference on AI (ECAI), pp. 229–234. IOS Press, Amsterdam (2010)Google Scholar
  25. 25.
    Elkawkagy, M., Bercher, P., Schattenberg, B., Biundo, S.: Improving hierarchical planning performance by the use of landmarks. In: Proceedings of the 26th National Conference on Artificial Intelligence (AAAI), pp. 1763–1769. AAAI Press, Palo Alto (2012)Google Scholar
  26. 26.
    Erol, K., Hendler, J.A., Nau, D.S.: UMCP: a sound and complete procedure for hierarchical task-network planning. In: Proceedings of the 2nd International Conference on AI Planning Systems (AIPS), pp. 249–254. AAAI Press, Palo Alto (1994)Google Scholar
  27. 27.
    Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for HTN planning. Ann. Math. Artif. Intell. 18(1), 69–93 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fiedler, A.: P.rex: an interactive proof explainer. In: Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR), pp. 416–420. Springer, Berlin (2001)Google Scholar
  29. 29.
    Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), pp. 1955–1961. AAAI Press, Palo Alto (2011)Google Scholar
  30. 30.
    Holland-Minkley, A.M., Barzilay, R., Constable, R.L.: Verbalization of high-level formal proofs. In: Proceedings of the 16th National Conference on AI and the 11th Innovative Applications of AI Conference (AAAI/IAAI), pp. 277–284. AAAI Press, Palo Alto (1999)Google Scholar
  31. 31.
    Höller, D., Behnke, G., Bercher, P., Biundo, S.: Language classification of hierarchical planning problems. In: Proceedings of the 21st European Conference on AI (ECAI), pp. 447–452. IOS Press, Amsterdam (2014)Google Scholar
  32. 32.
    Höller, D., Bercher, P., Richter, F., Schiller, M., Geier, T., Biundo, S.: Finding user-friendly linearizations of partially ordered plans. In: 28th PuK Workshop “Planen, Scheduling und Konfigurieren, Entwerfen” (PuK) (2014)Google Scholar
  33. 33.
    Höller, D., Behnke, G., Bercher, P., Biundo, S.: Assessing the expressivity of planning formalisms through the comparison to formal languages. In: Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS), pp. 158–165. AAAI Press, Palo Alto (2016)Google Scholar
  34. 34.
    Honold, F., Schüssel, F., Weber, M.: Adaptive probabilistic fission for multimodal systems. In: Proceedings of the 24th Australian Computer-Human Interaction Conference (OzCHI), pp. 222–231. ACM, New York (2012)Google Scholar
  35. 35.
    Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier, T., Barth, R., Hörnle, T., Schüssel, F., Reuter, S., Rau, M., Bertrand, G., Seegebarth, B., Kurzok, P., Schattenberg, B., Minker, W., Weber, M., Biundo, S.: Companion-technology: towards user- and situation-adaptive functionality of technical systems. In: International Conference on Intelligent Environments (IE), pp. 378–381. IEEE, New York (2014). http://companion.informatik.uni-ulm.de/ie2014/companion-system.mp4
  36. 36.
    Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierarchical domains. In: Proceedings of the 15th National Conference on AI (AAAI), pp. 882–888. AAAI Press, Palo Alto (1998)Google Scholar
  37. 37.
    Keyder, E., Geffner, H.: Soft goals can be compiled away. J. Artif. Intell. Res. 36, 547–556 (2009)zbMATHGoogle Scholar
  38. 38.
    Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574 (1974)Google Scholar
  39. 39.
    Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In: Proceedings of the 5th European Semantic Web Conference (ESWC), pp. 629–643. Springer, Heidelberg (2008)Google Scholar
  40. 40.
    Lyons, J.B., Koltai, K.S., Ho, N.T., Johnson, W.B., Smith, D.E., Shively, R.J.: Engineering trust in complex automated systems. Ergon. Des. 24(1), 13–17 (2016). https://doi.org/10.1177/1064804615611272 Google Scholar
  41. 41.
    McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of the 9th National Conference on AI (AAAI), pp. 634–639. AAAI Press, Palo Alto (1991)Google Scholar
  42. 42.
    Muir, B.M.: Trust in automation: part I. theoretical issues in the study of trust and human intervention in automated systems. Ergonomics 37(11), 1905–1922 (1994)Google Scholar
  43. 43.
    Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)zbMATHGoogle Scholar
  44. 44.
    Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H., Murdock, J.W.: Applications of SHOP and SHOP2. IEEE Intell. Syst. 20, 34–41 (2005)CrossRefGoogle Scholar
  45. 45.
    Nebel, B., Koehler, J.: Plan reuse versus plan generation: a theoretical and empirical analysis. Artif. Intell. 76(1-2), 427–454 (1995)CrossRefGoogle Scholar
  46. 46.
    Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pp. 459–466. Morgan Kaufmann, San Francisco (2001)Google Scholar
  47. 47.
    Nothdurft, F., Bertrand, G., Heinroth, T., Minker, W.: GEEDI - guards for emotional and explanatory dialogues. In: 6th International Conference on Intelligent Environments (IE), pp. 90–95. IEEE, New York (2010)Google Scholar
  48. 48.
    Nothdurft, F., Honold, F., Zablotskaya, K., Diab, A., Minker, W.: Application of verbal intelligence in dialog systems for multimodal interaction. In: 10th International Conference on Intelligent Environments (IE), pp. 361–364. IEEE, New York (2014)Google Scholar
  49. 49.
    Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors: J. Hum. Factors Ergon. Soc. 39(2), 230–253 (1997)CrossRefGoogle Scholar
  50. 50.
    Penberthy, J.S., Weld, D.S.: UCPOP: a sound, complete, partial order planner for ADL. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 103–114. Morgan Kaufmann, San Francisco (1992)Google Scholar
  51. 51.
    Porteous, J., Sebastia, L., Hoffmann, J.: On the extraction, ordering, and usage of landmarks in planning. In: Proceedings of the 6th European Conference on Planning (ECP), pp. 37–48. AAAI Press, Palo Alto (2001)Google Scholar
  52. 52.
    Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 1 edn. Prentice-Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  53. 53.
    Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more clear to human users – a formal approach for generating sound explanations. In: Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS), pp. 225–233. AAAI Press, Palo Alto (2012)Google Scholar
  54. 54.
    Simons, M.: Proof presentation for Isabelle. In: Proceedings of the 10th International Conference on Theorem Proving in Higher Order Logics (TPHOLs), pp. 259–274. Springer, Berlin (1997)Google Scholar
  55. 55.
    Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Proceedings of the 21st International Joint Conference on AI (IJCAI), pp. 1790–1797. AAAI Press, Palo Alto (2009)Google Scholar
  56. 56.
    Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. Electron. Notes Theor. Comput. Sci. 174(2), 109–123 (2007)CrossRefzbMATHGoogle Scholar
  57. 57.
    Younes, H.L.S., Simmons, R.G.: VHPOP: versatile heuristic partial order planner. J. Artif. Intell. Res. 20, 405–430 (2003)zbMATHGoogle Scholar
  58. 58.
    Zhu, L., Givan, R.: Heuristic planning via roadmap deduction. In: IPC-4 Booklet, pp. 64–66 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pascal Bercher
    • 1
  • Daniel Höller
    • 1
  • Gregor Behnke
    • 1
  • Susanne Biundo
    • 1
  1. 1.Institute for Artificial IntelligenceUlm UniversityUlmGermany

Personalised recommendations