Emotion Recognition from Speech

  • Andreas Wendemuth
  • Bogdan Vlasenko
  • Ingo Siegert
  • Ronald Böck
  • Friedhelm Schwenker
  • Günther Palm
Chapter
Part of the Cognitive Technologies book series (COGTECH)

Abstract

Spoken language is one of the main interaction patterns in human-human as well as in natural, companion-like human-machine interactions. Speech conveys content, but also emotions and interaction patterns determining the nature and quality of the user’s relationship to his counterpart. Hence, we consider emotion recognition from speech in the wider sense of application in Companion-systems. This requires a dedicated annotation process to label emotions and to describe their temporal evolution in view of a proper regulation and control of a system’s reaction. This problem is peculiar for naturalistic interactions, where the emotional labels are no longer a priori given. This calls for generating and measuring of a reliable ground truth, where the measurement is closely related to the usage of appropriate emotional features and classification techniques. Further, acted and naturalistic spoken data has to be available in operational form (corpora) for the development of emotion classification; we address the difficulties arising from the variety of these data sources. Speaker clustering and speaker adaptation will as well improve the emotional modeling. Additionally, a combination of the acoustical affective evaluation and the interpretation of non-verbal interaction patterns will lead to a better understanding of and reaction to user-specific emotional behavior.

Notes

Acknowledgements

This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).

References

  1. 1.
    Altman, D.G.: Practical Statistics for Medical Research. Chapman & Hall, London (1991)Google Scholar
  2. 2.
    Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Comput. Linguist. 34, 555–596 (2008)CrossRefGoogle Scholar
  3. 3.
    Batliner, A., Seppi, D., Steidl, S., Schuller, B.: Segmenting into adequate units for automatic recognition of emotion-related episodes: a speech-based approach. Adv. Hum. Comput. Interact. 2010, 15 (2010)Google Scholar
  4. 4.
    Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Wagner, J., Devillers, L., Vidrascu, L., Aharonson, V., Kessous, L., Amir, N.: Whodunnit – searching for the most important feature types signalling emotion-related user states in speech. Comput. Speech Lang. 25, 4–28 (2011)CrossRefGoogle Scholar
  5. 5.
    Bergmann, K., Böck, R., Jaecks, P.: Emogest: investigating the impact of emotions on spontaneous co-speech gestures. In: Proceedings of the Workshop on Multimodal Corpora 2014, pp. 13–16. LREC, Reykjavik (2014)Google Scholar
  6. 6.
    Böck, R., Hübner, D., Wendemuth, A.: Determining optimal signal features and parameters for HMM-based emotion classification. In: Proceedings of the 15th IEEE MELECON, Valletta, Malta, pp. 1586–1590 (2010)Google Scholar
  7. 7.
    Böck, R., Siegert, I., Vlasenko, B., Wendemuth, A., Haase, M., Lange, J.: A processing tool for emotionally coloured speech. In: Proceedings of the 2011 IEEE ICME, p. s.p, Barcelona (2011)Google Scholar
  8. 8.
    Böck, R., Limbrecht, K., Walter, S., Hrabal, D., Traue, H., Glüge, S., Wendemuth, A.: Intraindividual and interindividual multimodal emotion analyses in human-machine-interaction. In: Proceedings of the IEEE CogSIMA, New Orleans, pp. 59–64 (2012)Google Scholar
  9. 9.
    Böck, R., Limbrecht-Ecklundt, K., Siegert, I., Walter, S., Wendemuth, A.: Audio-based pre-classification for semi-automatic facial expression coding. In: Kurosu, M. (ed.) Human-Computer Interaction. Towards Intelligent and Implicit Interaction. Lecture Notes in Computer Science, vol. 8008, pp. 301–309. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Böck, R., Bergmann, K., Jaecks, P.: Disposition recognition from spontaneous speech towards a combination with co-speech gestures. In: Böck, R., Bonin, F., Campbell, N., Poppe, R. (eds.) Multimodal Analyses Enabling Artificial Agents in Human-Machine Interaction. Lecture Notes in Artificial Intelligence, vol. 8757, pp. 57–66. Springer, Cham (2015)Google Scholar
  11. 11.
    Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of German emotional speech. In: Proceedings of the INTERSPEECH-2005, Lisbon, pp. 1517–1520 (2005)Google Scholar
  12. 12.
    Callejas, Z., López-Cózar, R.: Influence of contextual information in emotion annotation for spoken dialogue systems. Speech Comm. 50, 416–433 (2008)CrossRefGoogle Scholar
  13. 13.
    Cicchetti, D., Feinstein, A.: High agreement but low kappa: II. Resolving the paradoxes. J. Clin. Epidemiol. 43, 551–558 (1990)CrossRefGoogle Scholar
  14. 14.
    Cowie, R., Cornelius, R.R.: Describing the emotional states that are expressed in speech. Speech Comm. 40, 5–32 (2003)CrossRefMATHGoogle Scholar
  15. 15.
    Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., Schröder, M.: FEELTRACE: an instrument for recording perceived emotion in real time. In: Proceedings of the SpeechEmotion-2000, Newcastle, pp. 19–24 (2000)Google Scholar
  16. 16.
    Dobris̆ek, S., Gajs̆ek, R., Mihelic̆, F., Paves̆ić, N., S̆truc, V.: Towards efficient multi-modal emotion recognition. Int. J. Adv. Robot. Syst. 10, 1–10 (2013)Google Scholar
  17. 17.
    Ekman, P.: Are there basic emotions? Psychol. Rev. 99, 550–553 (1992)CrossRefGoogle Scholar
  18. 18.
    Feinstein, A., Cicchetti, D.: High agreement but low kappa: I. The problems of two paradoxes. J. Clin. Epidemiol. 43, 543–549 (1990)CrossRefGoogle Scholar
  19. 19.
    Fleiss, J.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378–382 (1971)CrossRefGoogle Scholar
  20. 20.
    Frommer, J., Rösner, D., Haase, M., Lange, J., Friesen, R., Otto, M.: Detection and Avoidance of Failures in Dialogues – Wizard of Oz Experiment Operator’s Manual. Pabst Science Publishers, Lengerich (2012)Google Scholar
  21. 21.
    Grimm, M., Kroschel, K., Mower, E., Narayanan, S.: Primitives-based evaluation and estimation of emotions in speech. Speech Comm. 49, 787–800 (2007)CrossRefGoogle Scholar
  22. 22.
    Grimm, M., Kroschel, K., Narayanan, S.: The Vera am Mittag German audio-visual emotional speech database. In: Proceedings of the 2008 IEEE ICME, Hannover, pp. 865–868 (2008)Google Scholar
  23. 23.
    Harrington, J., Palethorpe, S., Watson, C.: Age-related changes in fundamental frequency and formants: a longitudinal study of four speakers. In: Proceedings of the INTERSPEECH-2007, Antwerp, vol. 2, pp. 1081–1084 (2007)Google Scholar
  24. 24.
    Iliou, T., Anagnostopoulos, C.N.: Comparison of different classifiers for emotion recognition. In: Proceedings of the Panhellenic Conference on Informatics, pp. 102–106 (2009)Google Scholar
  25. 25.
    Kelly, F., Harte, N.: Effects of long-term ageing on speaker verification. In: Vielhauer, C., Dittmann, J., Drygajlo, A., Juul, N., Fairhurst, M. (eds.) Biometrics and ID Management. Lecture Notes in Computer Science, vol. 6583, pp. 113–124. Springer, Berlin/Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Krippendorff, K.: Content Analysis: An Introduction to Its Methodology, 3rd edn. SAGE, Thousand Oaks (2012)Google Scholar
  27. 27.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)CrossRefMATHGoogle Scholar
  28. 28.
    Lee, C.M., Yildirim, S., Bulut, M., Kazemzadeh, A., Busso, C., Deng, Z., Lee, S., Narayanan, S.: Emotion recognition based on phoneme classes. In: Proceedings of the INTERSPEECH 2004, Jeju Island, pp. 889–892 (2004)Google Scholar
  29. 29.
    Lee, C., Busso, C., Lee, S., Narayanan, S.: Modeling mutual influence of interlocutor emotion states in dyadic spoken interactions. In: Proceedings of the INTERSPEECH 2009, pp. 1983–1986 (2009)Google Scholar
  30. 30.
    Lipovčan, L., Prizmić, Z., Franc, R.: Age and gender differences in affect regulation strategies. Drustvena istrazivanja: J. Gen. Soc. Issues 18, 1075–1088 (2009)Google Scholar
  31. 31.
    Maganti, H.K., Scherer, S., Palm, G.: A novel feature for emotion recognition in voice based applications. In: Affective Computing and Intelligent Interaction, pp. 710–711. Springer, Berlin/Heidelberg (2007)Google Scholar
  32. 32.
    McKeown, G., Valstar, M., Cowie, R., Pantic, M., Schroder, M.: The SEMAINE database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 3, 5–17 (2012)CrossRefGoogle Scholar
  33. 33.
    Meudt, S., Bigalke, L., Schwenker, F.: ATLAS – an annotation tool for HCI data utilizing machine learning methods. In: Proceedings of the 1st APD, San Francisco, pp. 5347–5352 (2012)Google Scholar
  34. 34.
    Morris, J.D.: SAM: the self-assessment manikin an efficient cross-cultural measurement of emotional response. J. Adv. Res. 35, 63–68 (1995)Google Scholar
  35. 35.
    Palm, G., Glodek, M.: Towards emotion recognition in human computer interaction. In: Neural nets and surroundings, pp. 323–336. Springer, Berlin/Heidelberg (2013)Google Scholar
  36. 36.
    Pittermann, J., Pittermann, A., Minker, W.: Handling Emotions in Human-Computer Dialogues. Springer, Amsterdam (2010)CrossRefGoogle Scholar
  37. 37.
    Prylipko, D., Rösner, D., Siegert, I., Günther, S., Friesen, R., Haase, M., Vlasenko, B., Wendemuth, A.: Analysis of significant dialog events in realistic human–computer interaction. J. Multimodal User Interfaces 8, 75–86 (2014)CrossRefGoogle Scholar
  38. 38.
    Rösner, D., Frommer, J., Friesen, R., Haase, M., Lange, J., Otto, M.: LAST MINUTE: a multimodal corpus of speech-based user-companion interactions. In: Proceedings of the 8th LREC, Istanbul, pp. 96–103 (2012)Google Scholar
  39. 39.
    Scherer, K.R.: Unconscious Processes in Emotion: The Bulk of the Iceberg, pp. 312–334. Guilford Press, New York (2005)Google Scholar
  40. 40.
    Scherer, S., Kane, J., Gobl, C., Schwenker, F.: Investigating fuzzy-input fuzzy-output support vector machines for robust voice quality classification. Comput. Speech Lang. 27(1), 263–287 (2013)CrossRefGoogle Scholar
  41. 41.
    Schuller, B., Steidl, S., Batliner, A.: The INTERSPEECH 2009 emotion challenge. In: Proceedings of the INTERSPEECH-2009, Brighton, pp. 312–315 (2009)Google Scholar
  42. 42.
    Schuller, B., Vlasenko, B., Eyben, F., Rigoll, G., Wendemuth, A.: Acoustic emotion recognition: a benchmark comparison of performances. In: Proceedings of the IEEE ASRU-2009, Merano, pp. 552–557 (2009)Google Scholar
  43. 43.
    Schuller, B., Batliner, A., Steidl, S., Seppi, D.: Recognising realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge. Speech Comm. 53, 1062–1087 (2011)CrossRefGoogle Scholar
  44. 44.
    Schuller, B., Valstar, M., Eyben, F., McKeown, G., Cowie, R., Pantic, M.: AVEC 2011–the first international audio/visual emotion challenge. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.C. (eds.) Affective Computing and Intelligent Interaction. Lecture Notes in Computer Science, vol. 6975, pp. 415–424. Springer, Berlin/Heidelberg (2011)CrossRefGoogle Scholar
  45. 45.
    Shami, M., Verhelst, W.: Automatic classification of emotions in speech using multi-corpora approaches. In: Proceedings of the 2nd IEEE Signal Processing Symposium, Antwerp, pp. 3–6 (2006)Google Scholar
  46. 46.
    Siegert, I., Böck, R., Philippou-Hübner, D., Vlasenko, B., Wendemuth, A.: Appropriate emotional labeling of non-acted speech using basic emotions, Geneva emotion wheel and self assessment manikins. In: Proceedings of the 2011 IEEE ICME, p. s.p, Barcelona (2011)Google Scholar
  47. 47.
    Siegert, I., Böck, R., Wendemuth, A.: The influence of context knowledge for multi-modal affective annotation. In: Kurosu, M. (ed.) Human-Computer Interaction. Towards Intelligent and Implicit Interaction. Lecture Notes in Computer Science, vol. 8008, pp. 381–390. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  48. 48.
    Siegert, I., Glodek, M., Panning, A., Krell, G., Schwenker, F., Al-Hamadi, A., Wendemuth, A.: Using speaker group dependent modelling to improve fusion of fragmentary classifier decisions. In: Proceedings of 2013 IEEE CYBCONF, Lausanne, pp. 132–137 (2013)Google Scholar
  49. 49.
    Siegert, I., Hartmann, K., Philippou-Hübner, D., Wendemuth, A.: Human behaviour in HCI: complex emotion detection through sparse speech features. In: Salah, A., Hung, H., Aran, O., Gunes, H. (eds.) Human Behavior Understanding. Lecture Notes in Computer Science, vol. 8212, pp. 246–257. Springer, Berlin/Heidelberg (2013)CrossRefGoogle Scholar
  50. 50.
    Siegert, I., Böck, R., Wendemuth, A.: Inter-rater reliability for emotion annotation in human-computer interaction – comparison and methodological improvements. J. Multimodal User Interfaces 8, 17–28 (2014)CrossRefGoogle Scholar
  51. 51.
    Siegert, I., Haase, M., Prylipko, D., Wendemuth, A.: Discourse particles and user characteristics in naturalistic human-computer interaction. In: Kurosu, M. (ed.) Human-Computer Interaction. Advanced Interaction Modalities and Techniques. Lecture Notes in Computer Science, vol. 8511, pp. 492–501. Springer, Berlin/Heidelberg (2014)Google Scholar
  52. 52.
    Siegert, I., Philippou-Hübner, D., Hartmann, K., Böck, R., Wendemuth, A.: Investigation of speaker group-dependent modelling for recognition of affective states from speech. Cogn. Comput. 6(4), 892–913 (2014)CrossRefGoogle Scholar
  53. 53.
    Siegert, I., Prylipko, D., Hartmann, K., Böck, R., Wendemuth, A.: Investigating the form-function-relation of the discourse particle “hm” in a naturalistic human-computer interaction. In: Bassis, S., Esposito, A., Morabito, F. (eds.) Recent Advances of Neural Network Models and Applications. Smart Innovation, Systems and Technologies, vol. 26, pp. 387–394. Springer, Berlin/Heidelberg (2014)CrossRefGoogle Scholar
  54. 54.
    Strauß, P.M., Hoffmann, H., Minker, W., Neumann, H., Palm, G., Scherer, S., Schwenker, F., Traue, H., Walter, W., Weidenbacher, U.: Wizard-of-oz data collection for perception and interaction in multi-user environments. In: International Conference on Language Resources and Evaluation (LREC) (2006)Google Scholar
  55. 55.
    Ververidis, D., Kotropoulos, C.: Emotional speech recognition: resources, features, and methods. Speech Comm. 48, 1162–1181 (2006)CrossRefGoogle Scholar
  56. 56.
    Vlasenko, B., Wendemuth, A.: Location of an emotionally neutral region in valence-arousal space. Two-class vs. three-class cross corpora emotion recognition evaluations. In: Proceedings of 2014 IEEE ICME (2014)Google Scholar
  57. 57.
    Vlasenko, B., Philippou-Hübner, D., Prylipko, D., Böck, R., Siegert, I., Wendemuth, A.: Vowels formants analysis allows straightforward detection of high arousal emotions. In: Proceedings of 2011 IEEE ICME, Barcelona (2011)Google Scholar
  58. 58.
    Vogt, T., André, E.: Improving automatic emotion recognition from speech via gender differentiation. In: Proceedings of the 5th LREC, p. s.p, Genoa (2006)Google Scholar
  59. 59.
    Wahlster, W. (ed.): SmartKom: Foundations of Multimodal Dialogue Systems. Springer, Heidelberg/Berlin (2006)Google Scholar
  60. 60.
    Walter, S., Scherer, S., Schels, M., Glodek, M., Hrabal, D., Schmidt, M., Böck, R., Limbrecht, K., Traue, H., Schwenker, F.: Multimodal emotion classification in naturalistic user behavior. In: Jacko, J. (ed.) Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments. Lecture Notes in Computer Science, vol. 6763, pp. 603–611. Springer, Berlin/Heidelberg (2011)CrossRefGoogle Scholar
  61. 61.
    Walter, S., Kim, J., Hrabal, D., Crawcour, S., Kessler, H., Traue, H.: Transsituational individual-specific biopsychological classification of emotions. IEEE Trans. Syst. Man Cybern. Syst. Hum. 43(4), 988–995 (2013)CrossRefGoogle Scholar
  62. 62.
    Young, S., Evermann, G., Gales, M., Hasin, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.4). Engineering Department, Cambridge University, Cambridge (2009)Google Scholar
  63. 63.
    Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31, 39–58 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Wendemuth
    • 1
    • 2
  • Bogdan Vlasenko
    • 1
  • Ingo Siegert
    • 1
  • Ronald Böck
    • 1
  • Friedhelm Schwenker
    • 3
  • Günther Palm
    • 3
  1. 1.Cognitive Systems GroupOtto von Guericke UniversityMagdeburgGermany
  2. 2.Center for Behavioral Brain SciencesMagdeburgGermany
  3. 3.Institute for Neural Information ProcessingUniversity of UlmUlmGermany

Personalised recommendations