LAST MINUTE: An Empirical Experiment in User-Companion Interaction and Its Evaluation

  • Jörg FrommerEmail author
  • Dietmar Rösner
  • Rico Andrich
  • Rafael Friesen
  • Stephan Günther
  • Matthias Haase
  • Julia Krüger
Part of the Cognitive Technologies book series (COGTECH)


The LAST MINUTE Corpus (LMC) is a unique resource for research on issues of Companion-technology. LMC not only comprises 57.5 h of multimodal recordings (audio, video, psycho-biological data) from interactions between users—133 subjects in sum, balanced in age and gender—and a WoZ-simulated speech-based interactive dialogue system. LMC also includes full verbatim transcripts of all these dialogues, sociodemographic and psychometric data of all subjects as well as material from 73 in-depth user interviews focusing the user’s individual experience of the interaction. In this chapter the experimental design and data collection of the LMC are shortly introduced. On this basis, exemplifying results from semantic analyses of the dialogue transcripts as well as from qualitative analyses of the interview material are presented. These illustrate LMC’s potential for investigations from numerous research perspectives.



This work was done within the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German Research Foundation (DFG).


  1. 1.
    Baayen, R.H.: Analyzing Linguistic Data – A Practical Introduction to Statistics Using R. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  2. 2.
    Baumeister, R.F., Leary, M.R.: The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117(3), 497 (1995)CrossRefGoogle Scholar
  3. 3.
    Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems. Künstl. Intell. (2016). doi:10.1007/s13218-015-0414-8Google Scholar
  4. 4.
    Dennett, D.C.: The Intentional Stance. MIT, Cambridge (1987)Google Scholar
  5. 5.
    Frommer, J., Rösner, D., Haase, M., Lange, J., Friesen, R., Otto, M.: Project A3 - Detection and Avoidance of Failures in Dialogs. Pabst Science Publisher, Lengerich (2012)Google Scholar
  6. 6.
    Frommer, J., Michaelis, B., Rösner, D., Wendemuth, A., Friesen, R., Haase, M., Kunze, M., Andrich, R., Lange, J., Panning, A., Siegert, I.: Towards emotion and affect detection in the multimodal last minute corpus. In: Calzolari, N., Choukri, K., Declerck, T., Doǧan, M.U., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA), Paris (2012)Google Scholar
  7. 7.
    Galletta, A.: Mastering the Semi-Structured Interview and Beyond: From Research Design to Analysis and Publication. NYU, New York (2013)CrossRefGoogle Scholar
  8. 8.
    Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Ziegler, J., Szwillus, G. (eds.) Mensch & Computer 2003. Berichte des German Chapter of the ACM, vol. 57, pp. 187–196. Vieweg+Teubner Verlag, Stuttgart (2003)CrossRefGoogle Scholar
  9. 9.
    Honold, F., Schüssel, F., Weber, M., Nothdurft, F., Bertrand, G., Minker, W.: Context models for adaptive dialogs and multimodal interaction. In: 2013 9th International Conference on Intelligent Environments (IE), pp. 57–64. IEEE, New York (2013)Google Scholar
  10. 10.
    Horowitz, L.M., Alden, L.E., Wiggins, J.S., Pincus, A.L.: Inventory of Interpersonal Problems Manual. Psychological Cooperation, San Antonio (2000)Google Scholar
  11. 11.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 2nd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  12. 12.
    Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen – der Fragebogen TA-EG. In: Lichtenstein, A., Stößel, C., Clemens, C. (eds.) Der Mensch im Mittelpunkt technischer Systeme, ZMMS Spektrum, Reihe 22, vol. 29, pp. 196–201. VDI Verlag GmbH, Düsseldorf (2008)Google Scholar
  13. 13.
    Kastner, M., Stangl, B.: Exploring a text-to-speech feature by describing learning experience, enjoyment, learning styles, and values–a basis for future studies. In: 2013 46th Hawaii International Conference on System Sciences (HICSS), pp. 3–12. IEEE, New York (2013)Google Scholar
  14. 14.
    King, J., Bond, T., Blandford, S.: An investigation of computer anxiety by gender and grade. Comput. Hum. Behav. 18(1), 69–84 (2002)CrossRefGoogle Scholar
  15. 15.
    Krämer, N.C., Eimler, S., von der Pütten, A., Payr, S.: Theory of companions: what can theoretical models contribute to applications and understanding of human-robot interaction? Appl. Artif. Intell. 25(6), 474–502 (2011)CrossRefGoogle Scholar
  16. 16.
    Krüger, J., Wahl, M., Frommer, J.: Making the system a relational partner: users’ ascriptions in individualization-focused interactions with companion-systems. In: Proceedings of the 8th International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services (CENTRIC 2015), pp. 48–54. IARIA XPS Press (2015).
  17. 17.
    Lange, J., Frommer, J.: Subjektives Erleben und intentionale Einstellung in Interviews zur Nutzer-Companion-Interaktion. In: Informatik 2011. Lecture Notes in Informatics, vol. 192, p. 240. Köllen, Bonn (2011).
  18. 18.
    Levenstein, S., Prantera, C., Varvo, V., Scribano, M.L., Berto, E., Luzi, C., Andreoli, A.: Development of the Perceived Stress Questionnaire: a new tool for psychosomatic research. J. Psychosom. Res. 37(1), 19–32 (1993)CrossRefGoogle Scholar
  19. 19.
    Mayring, P.: Qualitative content analysis. Theoretical foundations, basic procedures and software solution. n.p., Klagenfurth (2014).[retrieved:09,2015]Google Scholar
  20. 20.
    McCrae, R.R., Costa, P.T.: A contemplated revision of the NEO Five-Factor Inventory. Personal. Individ. Differ. 36(3), 587–596 (2004)CrossRefGoogle Scholar
  21. 21.
    McKeown, G., Valstar, M.F., Cowie, R., Pantic, M.: The SEMAINE corpus of emotionally coloured character interactions. In: 2010 IEEE International Conference on Multimedia and Expo (ICME), pp. 1079–1084. IEEE, New York (2010)Google Scholar
  22. 22.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  23. 23.
    Naumann, A., Hermann, F., Peissner, M., Henke, K.: Interaktion mit Informations-und Kommunikationstechnologie: Eine Klassifikation von Benutzertypen. In: Herczeg, M., Kindsmüller, M.C. (eds.) Mensch & Computer 2008: Viel Mehr Interaktion, pp. 37–45. Oldenbourg Verlag, München (2008)Google Scholar
  24. 24.
    Peterson, C., Semmel, A., Baeyer, C.v., Abramson, L.Y., Metalsky, G.I., Seligman, M.E.P.: The attributional Style Questionnaire. Cogn. Ther. Res. 6(3), 287–299 (1982)Google Scholar
  25. 25.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010)Google Scholar
  26. 26.
    Rogers, C.: A theory of therapy, personality and interpersonal relationships as developed in the client-centered framework. In: Koch, S. (ed.) Psychology: A Study of a Science. Formulations of the Person and the Social Context, vol. 3. McGraw Hill, New York (1959)Google Scholar
  27. 27.
    Rösner, D., Friesen, R., Otto, M., Lange, J., Haase, M., Frommer, J.: Intentionality in interacting with companion systems – an empirical approach. In: Jacko, J. (ed.) Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments. Lecture Notes in Computer Science, vol. 6763, pp. 593–602. Springer, Berlin/Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Rösner, D., Frommer, J., Andrich, R., Friesen, R., Haase, M., Kunze, M., Lange, J., Otto, M.: LAST MINUTE: a novel corpus to support emotion, sentiment and social signal processing. In: Devillers, L., Schuller, B., Batliner, A., Rosso, P., Douglas-Cowie, E., Cowie, R., Pelachaud, C. (eds.) Proceedings of LREC’12 - Workshop Abstracts, Istanbul, p. 171 (2012)Google Scholar
  29. 29.
    Rösner, D., Frommer, J., Friesen, R., Haase, M., Lange, J., Otto, M.: LAST MINUTE: a multimodal corpus of speech-based user-companion interactions. In: LREC, pp. 2559–2566 (2012)Google Scholar
  30. 30.
    Rösner, D., Friesen, R., Günther, S., Andrich, R.: Modeling and evaluating dialog success in the LAST MINUTE corpus. In: Chair, N.C.C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of LREC’14, Reykjavik (2014)Google Scholar
  31. 31.
    Rösner, D., Haase, M., Bauer, T., Günther, S., Krüger, J., Frommer, J.: Desiderata for the design of companion systems – insights from a large scale wizard of Oz experiment. Künstl. Intell. 30(1), 53–61 (2016). Online first: Oct 28, 2015; doi:10.1007/s13218-015-0410-zGoogle Scholar
  32. 32.
    Schmidt, T., Schütte, W.: Folker: an annotation tool for efficient transcription of natural, multi-party interaction. In: Chair, N.C.C, Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta (2010)Google Scholar
  33. 33.
    Selting, M., Auer, P., Barth-Weingarten, D., Bergmann, J.R., Bergmann, P., Birkner, K., Couper-Kuhlen, E., Deppermann, A., Gilles, P., Günthner, S., et al.: Gesprächsanalytisches Transkriptionssystem 2 (GAT 2). Gesprächsforschung-Online-Zeitschrift zur verbalen Interaktion 10 (2009)Google Scholar
  34. 34.
    Siegert, I., Philippou-Hübner, D., Hartmann, K., Böck, R., Wendemuth, A.: Investigation of speaker group-dependent modelling for recognition of affective states from speech. Cogn. Comput. 6(4), 892–913 (2014). doi:10.1007/s12559-014-9296-6CrossRefGoogle Scholar
  35. 35.
    Sieverding, M., Koch, S.C.: (Self-) evaluation of computer competence: how gender matters. Comput. Educ. 52(3), 696–701 (2009)Google Scholar
  36. 36.
    Veletsianos, G.: How do learners respond to pedagogical agents that deliver social-oriented non-task messages? Impact on student learning, perceptions, and experiences. Comput. Hum. Behav. 28(1), 275–283 (2012)CrossRefGoogle Scholar
  37. 37.
    Wilks, Y.: Close Engagements with Artificial Companions: Key Social, Psychological, Ethical and Design Issues, vol. 8. John Benjamins Publishing, Amsterdam (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jörg Frommer
    • 1
    Email author
  • Dietmar Rösner
    • 2
  • Rico Andrich
    • 2
  • Rafael Friesen
    • 2
  • Stephan Günther
    • 2
  • Matthias Haase
    • 1
  • Julia Krüger
    • 1
  1. 1.Universitätsklinik für Psychosomatische Medizin und PsychotherapieOtto-von-Guericke-UniversitätMagdeburgGermany
  2. 2.Institut für Wissens- und SprachverarbeitungOtto-von-Guericke UniversitätMagdeburgGermany

Personalised recommendations