An Introduction to Companion-Technology

Chapter
Part of the Cognitive Technologies book series (COGTECH)

Abstract

Companion-technology enables a new generation of intelligent systems. These Companion-systems smartly adapt their functionality to a user’s individual requirements. They comply with his or her abilities, preferences, and current needs and adjust their behavior as soon as critical changes of the environment or changes of the user’s emotional state or disposition are observed. Companion-systems are distinguished by characteristics such as competence, individuality, adaptability, availability, cooperativeness, and trustworthiness. These characteristics are realized by integrating the technical functionality of systems with a combination of cognitive processes. Companion-systems are able to perceive the user and the environment; they reason about the current situation, exploit background knowledge, and provide and pursue appropriate plans of action; and they enter into a dialog with the user where they select the most suitable modes of interaction in terms of media, modalities and dialog strategies. This chapter introduces the essence of Companion-technology and sheds light on the huge range of its prospective applications.

Notes

Acknowledgements

This work originates from the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” (www.sfb-trr-62.de) funded by the German Research Foundation (DFG).

References

  1. 1.
    Albrecht, S., Ramirez-Amaro, K., Ruiz-Ugalde, F., Weikersdorfer, D., Leibold, M., Ulbrich, M., Beetz, M.: Imitating human reaching motions using physically inspired optimization principles. In: Proceedings of 11th IEEE-RAS International Conference on Humanoid Robots (2011)Google Scholar
  2. 2.
    Biundo, S., Wendemuth, A.: Von kognitiven technischen Systemen zu Companion-Systemen. Künstliche Intelligenz 24(4), 335–339 (2010). DOI 10.1007/s13218-010-0056-9CrossRefGoogle Scholar
  3. 3.
    Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems. Künstliche Intelligenz 30(1), 71–75 (2016). DOI 10. 1007/s13218-015-0414-8Google Scholar
  4. 4.
    Biundo, S., Höller, D., Bercher, P.: Special issue on companion technologies. Künstliche Intelligenz 30(1), 5–9 (2016). DOI 10.1007/ s13218-015-0421-9CrossRefGoogle Scholar
  5. 5.
    Biundo, S., Höller, D., Schattenberg, B., Bercher, P.: Companion-technology: an overview. Künstliche Intelligenz 30(1), 11–20 (2016). DOI 10.1007/s13218-015-0419-3CrossRefGoogle Scholar
  6. 6.
    Dautenhahn, K., Woods, S., Kaouri, C., Walters, M.L., Koay, K.L., Werry, I.: What is a robot companion - friend, assistant or butler. In: Proceedings of IEEE IROS, pp. 1488–1493 (2005)Google Scholar
  7. 7.
    Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann, Burlington (2004)MATHGoogle Scholar
  8. 8.
    Gugenheimer, J., Knierim, P., Seifert, J., Rukzio, E.: Ubibeam: an interactive projector-camera system for domestic deployment. In: Proceedings of the 9th ACM International Conference on Interactive Tabletops and Surfaces, ITS’14, pp. 305–310. ACM, New York (2014)Google Scholar
  9. 9.
    Honold, F., Schüssel, F., Weber, M.: The automated interplay of multimodal fission and fusion in adaptive HCI. In: 10th International Conference on Intelligent Environments (IE), pp. 170–177 (2014)Google Scholar
  10. 10.
    Kächele, M., Rukavina, S., Palm, G., Schwenker, F., Schels, M.: Paradigms for the construction and annotation of emotional corpora for real-world human-computer-interaction. In: ICPRAM 2015 - Proceedings of the International Conference on Pattern Recognition Applications and Methods, Volume 1, Lisbon, 10–12 January 2015, pp. 367–373 (2015)Google Scholar
  11. 11.
    Kohrs, C., Angenstein, N., Scheich, H., Brechmann, A.: The temporal contingency of feedback: effects on brain activity. In: Proceedings of International Conference on Aging and Cognition (2010)Google Scholar
  12. 12.
    Lange, J., Frommer, J.: Subjektives Erleben und intentionale Einstellung in Interviews zur Nutzer-Companion-Interaktion. In: Lecture Notes in Informatics, Band P192: 41, Jahrestagung der Gesellschaft für Informatik, pp. 240–254. Gesellschaft für Informatik, Bonn (2011)Google Scholar
  13. 13.
    Matthews, J.T., Engberg, S.J., Glover, J., Pollack, M.E., Thrun, S.: Robotic assistants for the elderly: designing and conducting field studies. In: Proceedings of 10th IASTED International Conference on Robotics and Applications (2004)Google Scholar
  14. 14.
    Nothdurft, F., Heinroth, T., Minker, W.: The impact of explanation dialogues on human-computer trust. In: Human-Computer Interaction. Users and Contexts of Use, pp. 59–67. Springer, Berlin (2013)Google Scholar
  15. 15.
    Putze, F., Schultz, T.: Adaptive cognitive technical systems. J. Neurosci. Methods 234, 108–115 (2014). DOI 10.1016/j.jneumeth.2014.06.029CrossRefGoogle Scholar
  16. 16.
    Rösner, D., Haase, M., Bauer, T., Günther, S., Krüger, J., Frommer, J.: Desiderata for the design of companion systems. Künstliche Intelligenz 30(1), 53–61 (2016). DOI 10.1007/s13218-015-0410-zCrossRefGoogle Scholar
  17. 17.
    Schwenker, F., Scherer, S., Morency, L. (eds.): Multimodal pattern recognition of social signals in human-computer-interaction. Lecture Notes in Computer Science, vol. 8869. Springer, Berlin (2015)Google Scholar
  18. 18.
    Tornow, M., Krippl, M., Bade, S., Thiers, A., Siegert, I., Handrich, S., Krüger, J., Schega, L., Wendemuth, A.: Integrated health and fitness (iGF)-corpus - ten-modal highly synchronized subject-dispositional and emotional human machine interactions. In: Multimodal Corpora: Computer Vision and Language Processing (MMC) at LREC 2016, pp. 21–24 (2016)Google Scholar
  19. 19.
    Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. Trans. Evol. Comput. 11(2), 151–180 (2007). DOI 10.1109/TEVC.2006.890274CrossRefGoogle Scholar
  20. 20.
    Walter, S., Scherer, S., Schels, M., Glodek, M., Hrabal, D., Schmidt, M., Böck, R., Limbrecht, K., Traue, H.C., Schwenker, F.: Multimodal emotion classification in naturalistic user behavior. In: 14th International Conference on Human-Computer Interaction (HCI), Orlando, FL, 9–14 July 2011, Proceedings, Part III, pp. 603–611 (2011)Google Scholar
  21. 21.
    Wendemuth, A., Biundo, S.: A companion technology for cognitive technical systems. In: Cognitive Behavioural Systems. Lecture Notes in Computer Science, pp. 89–103. Springer, Cham (2012)Google Scholar
  22. 22.
    Wilks, Y.: Close Engagements with Artificial Companions: Key Social, Psychological, Ethical and Design Issues. Natural Language Processing, vol. 8. John Benjamins Publishing, Amsterdam (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Artificial IntelligenceUlm UniversityUlmGermany
  2. 2.Institute for Information and Communications EngineeringOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations