Advertisement

FPT Approximation Algorithm for Scheduling with Memory Constraints

  • Eric Angel
  • Cédric Chevalier
  • Franck Ledoux
  • Sébastien MoraisEmail author
  • Damien Regnault
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9833)

Abstract

In this paper we study a scheduling problem motivated by performing intensive numerical simulations on large meshes. In order to run the simulation as fast as possible, we must allocate computations on different processors such that the makespan is minimized, but also take care of the limited memory on each processor. We present a dynamic programming based algorithm that ensures that both of these objectives are satisfied, within a ratio of 1 + \(\varepsilon \). Our algorithm is fixed-parameter tractable (FPT) with respect to the path-width of the graph. For sake of readability, the algorithm is presented for two identical machines, but it can be generalized for a fixed number of unrelated processors.

Keywords

Scheduling Approximation algorithm Dynamic programming Fixed-parameter tractable 

References

  1. 1.
    Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth of graphs. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 544–555. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  2. 2.
    Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica 27, 275–291 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)zbMATHGoogle Scholar
  4. 4.
    Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algorithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1–2), 87–99 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979). ElsevierMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math. 43(1), 97–101 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46(3), 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Robertson, N., Seymour, P.: Graph minors. I. Excluding a forst. J. Comb. Theory Ser. B 35(1), 39–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. In: Proceeding of Innovations in Computer Science (ICS), 342–357 (2010)Google Scholar
  13. 13.
    Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput. 12(1), 57–74 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Woeginger, G.J.: A comment on scheduling two parallel machines with capacity constraints. Discret. Optim. 2(3), 269–272 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eric Angel
    • 1
  • Cédric Chevalier
    • 2
  • Franck Ledoux
    • 2
  • Sébastien Morais
    • 1
    • 2
    Email author
  • Damien Regnault
    • 1
  1. 1.IBISCUniversité d’EvryEvryFrance
  2. 2.CEA, DAM, DIFArpajonFrance

Personalised recommendations