Advertisement

Accounting for Energy-Resources use by Thermodynamics

  • Matteo Vincenzo Rocco
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter investigates the role played by thermodynamics in quantifying energy-resources use. Specifically, the main achievements of this chapter are: (1) to present a general overview of thermodynamics-based life cycle methods, and to propose a tentative taxonomy of such methods; (2) to define processes for the thermodynamic characterization of non-renewable energy-resources for the purpose of Input-Output analysis and environmental accountings in general.

Keywords

Entropy Generation Exergy Analysis Exergy Destruction Life Cycle Phase Reference Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bakshi, B. R., Gutowski, T. G. P., & Sekulić, D. P. (2011). Thermodynamics and the destruction of resources. New York: Cambridge University Press.CrossRefGoogle Scholar
  2. Bejan, A. (1995). Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. CRC press.Google Scholar
  3. Bejan, A. (2002). Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. International Journal of Energy Research, 26, 0–43.CrossRefGoogle Scholar
  4. Bejan, A. (2006). Advanced engineering thermodynamics. Wiley.Google Scholar
  5. Bejan, A., Tsatsaronis, G., Moran, M. J. (1996). Thermal design and optimization. Wiley.Google Scholar
  6. Bösch, M. E., Hellweg, S., Huijbregts, M. A., & Frischknecht, R. (2007). Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. International Journal of Life Cycle Assessment, 12, 181–190.CrossRefGoogle Scholar
  7. Brown, M. T., & Herendeen, R. A. (1996). Embodied energy analysis and EMERGY analysis: A comparative view. Ecological Economics, 19, 219–235.CrossRefGoogle Scholar
  8. Cleveland, C., & Costanza, R. (2007). Net energy analysis. In Encyclopedia of the Earth.Google Scholar
  9. Cleveland, C. J., & Costanza, R. (2008). Energy return on investment (EROI). In Encyclopedia of Earth (online), April.Google Scholar
  10. Cornelissen, R. L., (1997). Thermodynamics and sustainable development; the use of exergy analysis and the reduction of irreversibility. Universiteit Twente.Google Scholar
  11. Cornelissen, R. L., & Hirs, G. G. (2002). The value of the exergetic life cycle assessment besides the LCA. Energy Conversion and Management, 43, 1417–1424.CrossRefGoogle Scholar
  12. Curran, M. A. (2012). Life cycle assessment handbook: A guide for environmentally sustainable products.Google Scholar
  13. Dai, J., Chen, B., & Sciubba, E. (2014). Ecological accounting based on extended exergy: A sustainability perspective. Environmental Science and Technology, 48, 9826–9833.CrossRefGoogle Scholar
  14. Dewulf, J., Bösch, M., Meester, B. D., Vorst, G. V. D., Langenhove, H. V., Hellweg, S., et al. (2007). Cumulative exergy extraction from the natural environment (CEENE): A comprehensive life cycle impact assessment method for resource accounting. Environmental Science and Technology, 41, 8477–8483.CrossRefGoogle Scholar
  15. El-Sayed, Y., & Evans, R. B. (1970). Thermoeconomics and the design of heat systems. Journal of Engineering for Power, 92, 27.CrossRefGoogle Scholar
  16. Elsner, N., & Fratzscher, W. (1957). Die Bedeutung der Exergieflußbilder für die Untersuchung wärmetechnischer Anlagen, gezeigt am Beispiel eines Abhitzekessels, eines Wärmekraftwerks und einer Dampflokomotive.Google Scholar
  17. Erlach, B., Serra, L., & Valero, A. (1999). Structural theory as standard for thermoeconomics. Energy Conversion and Management, 40, 1627–1649.CrossRefGoogle Scholar
  18. Evans, R. B., & Tribus, M. (1965). Thermo-economics of saline water conversion. Industrial & Engineering Chemistry Process Design and Development, 4, 195–206.CrossRefGoogle Scholar
  19. Gaggioli, R. A. (1983). Efficiency and costing: Second law analysis of processes. American Chemical Society.Google Scholar
  20. Gößling-Reisemann, S. (2006). Entropy as a measure for resource consumption—application to primary and secondary copper production. In Sustainable metals management. Springer, pp. 195–235.Google Scholar
  21. Gößling-Reisemann, S. (2008). What is resource consumption and how can it be measured? Journal of Industrial Ecology, 12, 10–25.CrossRefGoogle Scholar
  22. Guinée, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The International Journal of Life Cycle Assessment, 7, 311–313.CrossRefGoogle Scholar
  23. Gyftopoulos, E. P. & Beretta, G. P. (2005). Thermodynamics: Foundations and applications. Courier Corporation.Google Scholar
  24. Hang, M. Y. L. P., Martinez-Hernandez, E., Leach, M., & Yang, A. (2016). Towards a coherent multi-level framework for resource accounting. Journal of Cleaner Production, 125, 204–215.CrossRefGoogle Scholar
  25. Hau, J. L., & Bakshi, B. R. (2004a). Expanding exergy analysis to account for ecosystem products and services. Environmental Science and Technology, 38, 3768–3777.CrossRefGoogle Scholar
  26. Hau, J. L., & Bakshi, B. R. (2004b). Promise and problems of emergy analysis. Ecological Modelling, 178, 215–225.CrossRefGoogle Scholar
  27. Hirs, G. (2003). Thermodynamics applied. Where? Why? Energy, 28, 1303–1313.CrossRefGoogle Scholar
  28. Jorgensen, S., Odum, H., & Brown, M. (2004). Emergy and exergy stored in genetic information. Ecological Modelling, 178, 11–16.CrossRefGoogle Scholar
  29. Kondepudi, D., & Prigogine, I. (2014). Modern thermodynamics: From heat engines to dissipative structures. Wiley.Google Scholar
  30. Kotas, T. J. (1985). The exergy method of thermal plant analysis. Butterworths.Google Scholar
  31. Kotas, T. J. (2012). The exergy method of thermal plant analysis. Paragon Publishing.Google Scholar
  32. Kotas, T. J. (2013). The exergy method of thermal plant analysis. Elsevier.Google Scholar
  33. Lozano, M., & Valero, A. (1993). Theory of the exergetic cost. Energy, 18, 939–960.CrossRefGoogle Scholar
  34. Michael, H., Mark, G., Jerome, G., Reinout, H., Mark, H., Olivier, J., Manuele, M., & An, D. S. (2011). Recommendations for life cycle impact assessment in the European context—based on existing environmental impact assessment models and factors (International Reference Life Cycle Data System—ILCD handbook). Publications Office of the European Union.Google Scholar
  35. Moran, M., & Sciubba, E. (1994). Exergy analysis: Principles and practice. ASME Transactions Journal of Engineering Gas Turbines and Power, 116, 285–290.CrossRefGoogle Scholar
  36. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. (2010). Fundamentals of engineering thermodynamics. Wiley.Google Scholar
  37. Morris, D. R., & Szargut, J. (1986). Standard chemical exergy of some elements and compounds on the planet earth. Energy, 11, 733–755.CrossRefGoogle Scholar
  38. Odum, H. T. (1994). The emergy of natural capital. In Investing in natural capital: The ecological economics approach to sustainability ( pp. 200–214). Washington (DC): Island Press.Google Scholar
  39. Odum, H. T., & Odum, E. P. (2000). The energetic basis for valuation of ecosystem services. Ecosystems, 3, 21–23.CrossRefGoogle Scholar
  40. Orsi, F., Muratori, M., Rocco, M., Colombo, E., & Rizzoni, G. (2016). A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost. Applied Energy, 169, 197–209.CrossRefGoogle Scholar
  41. Pennington, D., Potting, J., Finnveden, G., Lindeijer, E., Jolliet, O., Rydberg, T., et al. (2004). Life cycle assessment part 2: Current impact assessment practice. Environment International, 30, 721–739.CrossRefGoogle Scholar
  42. RL, C., van Nimwegen, A., & Hirs,Cornelissen R.L., Van Nimwegen P.A., Hirs G.G. (2000). Exergetic life-cycle analysis. In Proceedings of ECOS 2000, Enschende, Netherlands. Google Scholar
  43. Rocco, M., Colombo, E., & Sciubba, E. (2014a). Advances in exergy analysis: A novel assessment of the extended exergy accounting method. Applied Energy, 113, 1405–1420.CrossRefGoogle Scholar
  44. Rocco, M. V., Cassetti, G., Gardumi, F., & Colomb, E. (2016). Exergy life cycle assessment of soil erosion remediation technologies: An Italian case study. Journal of Cleaner Production, 112, 3007–3017.CrossRefGoogle Scholar
  45. Rocco, M. V., Colombo, E., & Sciubba, E. (2014b). Advances in exergy analysis: A novel assessment of the extended exergy accounting method. Applied Energy, 113, 1405–1420.CrossRefGoogle Scholar
  46. Sciubba, E. (2001). Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exergy, an International Journal, 1, 68–84.CrossRefGoogle Scholar
  47. Sciubba, E. (2005). Exergo-economics: Thermodynamic foundation for a more rational resource use. International Journal of Energy Research, 29, 613–636.CrossRefGoogle Scholar
  48. Sciubba, E. (2011). A revised calculation of the econometric factors α- and β for the extended exergy accounting method. Ecological Modelling, 222, 1060–1066.CrossRefGoogle Scholar
  49. Sciubba, E. (2013). Can an environmental indicator valid both at the local and global scales be derived on a thermodynamic basis? Ecological Indicators, 29, 125–137.CrossRefGoogle Scholar
  50. Sciubba, E., & Wall, G. (2010). A brief commented history of exergy from the beginnings to 2004. International Journal of Thermodynamics, 10, 1–26.Google Scholar
  51. Sciubba, E., & Zullo, F. (2011). Is sustainability a thermodynamic concept? International Journal of Exergy, 8, 68–85.CrossRefGoogle Scholar
  52. Seager, T., & Theis, T. (2002). A uniform definition and quantitative basis for industrial ecology. Journal of Cleaner Production, 10, 225–235.CrossRefGoogle Scholar
  53. Song, G., Xiao, J., Zhao, H., & Shen, L. (2012). A unified correlation for estimating specific chemical exergy of solid and liquid fuels. Energy, 40, 164–173.CrossRefGoogle Scholar
  54. Stougie, L., & Van der Kooi, H. (2011). The relation between exergy and sustainability according to literature. In C. J. Koroneos, D. C. Rovas & A. T. Dompros (Eds.), ELCAS2011: Proceedings of the 2nd International Exergy, Life Cycle Assessment and Sustainability Workshop and Symposium, 19–21 June 2011, Nisyros Island, Greece, pp. 590–597.Google Scholar
  55. Szargut, J. (1989). Chemical exergies of the elements. Applied Energy, 32, 269–286.CrossRefGoogle Scholar
  56. Szargut, J. (2005a). Exergy method: Technical and ecological applications. WIT Press.Google Scholar
  57. Szargut, J. (2005b). Exergy method: Technical and ecological applications. WIT press.Google Scholar
  58. Szargut, J., Morris, D. R., & Steward, F. R. (1987). Exergy analysis of thermal, chemical, and metallurgical processes.Google Scholar
  59. Szargut, J., Morris, D. R., & Steward, F. R. (1988). Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere.Google Scholar
  60. Szargut, J., & Stanek, W. (2007). Thermo-ecological optimization of a solar collector. Energy, 32, 584–590.CrossRefGoogle Scholar
  61. Szargut, J., Valero, A., Stanek, W., & Valero, A. (2005). Towards an international legal reference environment. Proceedings of ECOS, 2005, 409–420.Google Scholar
  62. Szargut, J., Ziębik, A., & Stanek, W. (2002). Depletion of the non-renewable natural exergy resources as a measure of the ecological cost. Energy Conversion and Management, 43, 1149–1163.CrossRefGoogle Scholar
  63. Talens Peiró, L., Villalba Méndez, G., Sciubba, E., & i Durany, X. G. (2010). Extended exergy accounting applied to biodiesel production. Energy, 35, 2861–2869.CrossRefGoogle Scholar
  64. Tsatsaronis, G. (1993). Thermoeconomic analysis and optimization of energy systems. Progress in Energy and Combustion Science, 19, 227–257.CrossRefGoogle Scholar
  65. Ukidwe, N. U., & Bakshi, B. R. (2004). Thermodynamic accounting of ecosystem contribution to economic sectors with application to 1992 US economy. Environmental Science and Technology, 38, 4810–4827.CrossRefGoogle Scholar
  66. Ukidwe, N. U., & Bakshi, B. R. (2007). Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model. Energy, 32, 1560–1592.CrossRefGoogle Scholar
  67. Ukidwe, N. U., Hau, J. L., & Bakshi, B. R. (2009). Thermodynamic input-output analysis of economic and ecological systems. Handbook of input-output economics in industrial ecology (pp. 459–490). Springer.Google Scholar
  68. Valero, A. (1989). Thermoeconomics: A new chapter of physics. In Workshop on Energy Analysis of Power Plants, Pisa Auditorium ENEL-CRTN, Italy, Feb.Google Scholar
  69. Valero, A., Lozano, M., & Muñoz, M. (1986a). A general theory of exergy saving. I. On the exergetic cost. Computer-Aided Engineering and Energy Systems: Second Law Analysis and Modelling, 3, 1–8.Google Scholar
  70. Valero, A., Lozano, M., & Muñoz, M. (1986b). A general theory of exergy saving. II. On the thermoeconomic cost. Computer-Aided Engineering and Energy Systems: Second Law Analysis and Modelling, 3, 1–8.Google Scholar
  71. Valero, A., Lozano, M., & Muñoz, M. (1986c). A general theory of exergy saving. III. Energy saving and Thermoeconomics. Computer-Aided Engineering and Energy Systems: Second Law Analysis and Modelling, 3, 1–8.Google Scholar
  72. Valero, A., Usón, S., Torres, C., & Valero, A. (2010). Application of thermoeconomics to industrial ecology. Entropy, 12, 591–612.CrossRefGoogle Scholar
  73. Zhang, Y., Baral, A., & Bakshi, B. R. (2010a). Accounting for ecosystem services in life cycle assessment, part II: Toward an ecologically based LCA. Environmental Science and Technology, 44, 2624–2631.CrossRefGoogle Scholar
  74. Zhang, Y., Singh, S., & Bakshi, B. R. (2010b). Accounting for ecosystem services in life cycle assessment, part I: A critical review. Environmental Science and Technology, 44, 2232–2242.CrossRefGoogle Scholar
  75. Zhou, R., Liu, C., Li, J., & Yu, J. X. (2013). ELCA evaluation for keyword search on probabilistic XML data. World Wide Web, 16, 171–193.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of EnergyPolitecnico di MilanoMilanItaly

Personalised recommendations