Charging Architectures for Electric and Plug-In Hybrid Electric Vehicles

  • Sebastian Rivera
  • Samir KouroEmail author
  • Bin Wu


This chapter provides an overview of the different charging architectures available for electric vehicles and plug-in hybrid electric vehicles. The charging architectures are addressed following two main categories: onboard chargers, used mainly for slow and semi-fast charging (generally AC connection), and off-board chargers, used for fast charging (DC connection). The chapter focuses on the mainstream solutions available in the industry, and also presents some recent advances and trends found in the literature. In addition, the chapter provides an introduction to well-established charging standards being used by manufacturers. Finally, the control schemes used in charging configurations, including the control schemes for DC–DC and AC–DC converter stages, are discussed, the latter considering both single- and three-phase control schemes.


Onboard chargers Off-board chargers Charging standards Converter Charging Control scheme Coupled Transformer Voltage 


  1. 1.
    Haghbin S, Lundmark S, Alakula M, Carlson O (2013) Grid-connected integrated battery chargers in vehicle applications: review and new solution. IEEE Trans Ind Electron 60(2):459–473CrossRefGoogle Scholar
  2. 2.
    Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Vehicular Technol 61(8):3475–3489CrossRefGoogle Scholar
  3. 3.
    Yilmaz M, Krein PT (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron 28(5):2151–2169CrossRefGoogle Scholar
  4. 4.
    Aggeler D, Canales F, Zelaya-De La Parra H, Coccia A, Butcher N, Apeldoorn O (2010) Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids. Gothenburg, Sweden, pp 1–8Google Scholar
  5. 5.
    Aditya K, Williamson SS. Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging—a comprehensive review. In: Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, June 2014, pp 1–6Google Scholar
  6. 6.
    Gautam DS, Musavi F, Edington M, Eberle W, Dunford WG (2012) An automotive onboard 3.3-kw battery charger for PHEV application. IEEE Trans Vehicular Technol 61(8):3466–3474CrossRefGoogle Scholar
  7. 7.
    Kim J-S, Choe G-Y, Jung H-M, Lee B-K, Cho Y-J, Han K-B (2010) Design and implementation of a high-efficiency on-board battery charger for electric vehicles with frequency control strategy. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6Google Scholar
  8. 8.
    Chae H-J, Moon H-T, Lee J-Y (2010) On-board battery charger for PHEV without high-voltage electrolytic capacitor. Electron Lett 46(25):1691–1692CrossRefGoogle Scholar
  9. 9.
    Chae HJ, Kim WY, Yun SY, Jeong YS, Lee JY, Moon HT (2011) 3.3 kw on board charger for electric vehicle. In: 2011 I.E. 8th International Conference on Power Electronics and ECCE Asia (ICPE ECCE), May 2011, pp 2717–2719Google Scholar
  10. 10.
    Bae S, Kwasinski A (2012) Spatial and temporal model of electric vehicle charging demand. IEEE Trans Smart Grid 3(1):394–403CrossRefGoogle Scholar
  11. 11.
    Qian K, Chengke Z, Allan M, Yuan Y (2011) Modeling of load demand due to EV battery charging in distribution systems. IEEE Trans Power Syst 26(2):802–810CrossRefGoogle Scholar
  12. 12.
    SAE electric vehicle and plug in hybrid electric vehicle conductive charge coupler (2012) SAE Std. J1772, Oct 2012Google Scholar
  13. 13.
    Oh C-Y, Kim D-H, Woo D-G, Sung W-Y, Kim Y-S, Lee B-K (2013) A high-efficient nonisolated single-stage on-board battery charger for electric vehicles. IEEE Trans Power Electron 28(12):5746–5757CrossRefGoogle Scholar
  14. 14.
    Lee Y-J, Khaligh A, Emadi A (2009) Advanced integrated bidirectional ac/dc and dc/dc converter for plug-in hybrid electric vehicles. IEEE Trans Vehicular Technol 58(8):3970–3980CrossRefGoogle Scholar
  15. 15.
    Onar OC, Kobayashi J, Erb DC, Khaligh A (2012) A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs. IEEE Trans Vehicular Technol 61(5):2018–2032CrossRefGoogle Scholar
  16. 16.
    Rippel WE (1990) Integrated traction inverter and battery charger apparatus. US Patent 4,920,475, 24 Apr 1990Google Scholar
  17. 17.
    Rippel WE, Cocconi AG (1992) Integrated motor drive and recharge system. US Patent 5,099,186, 24 Mar 1992Google Scholar
  18. 18.
    De Sousa L, Bouchez B (2011) Combined electric device for powering and charging. US Patent App. 13/127,850, 15 Sept 2011Google Scholar
  19. 19.
    De Sousa L, Silvestre B, Bouchez B (2010) A combined multiphase electric drive and fast battery charger for electric vehicles. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6Google Scholar
  20. 20.
    Bruyre A, De Sousa L, Bouchez B, Sandulescu P, Kestelyn X, Semail E (2010) A multiphase traction/fast-battery-charger drive for electric or plug-in hybrid vehicles: solutions for control in traction mode. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–7Google Scholar
  21. 21.
    Lacroix S, Laboure E, Hilairet M (2010) An integrated fast battery charger for electric vehicle. In: Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Sept 2010, pp 1–6Google Scholar
  22. 22.
    Haghbin S, Lundmark S, Alakula M, Carlson O (2011) An isolated high-power integrated charger in electrified-vehicle applications. IEEE Trans Vehicular Technol 60(9):4115–4126CrossRefGoogle Scholar
  23. 23.
    Haghbin S, Khan K, Zhao S, Alakula M, Lundmark S, Carlson O (2013) An integrated 20-kw motor drive and isolated battery charger for plug-in vehicles. IEEE Trans Power Electron 28(8):4013–4029CrossRefGoogle Scholar
  24. 24.
    Alaküla M, Haghbin S (2011) Electrical apparatus comprising drive system and electrical machine with reconnectable stator winding. WO Patent App. PCT/SE2011/050,745, 22 Dec 2011Google Scholar
  25. 25.
    Chang H-C, Liaw C-M (2009) Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities. IEEE Trans Vehicular Technol 58(7):3198–3215CrossRefGoogle Scholar
  26. 26.
    Silva V, Kieny C (2011) Impacts of EV on power systems and minimal control solutions to mitigate these. Essen, Germany, RWE Deutschland AG.
  27. 27.
    Christen D, Tschannen S, Biela J (2012) Highly efficient and compact DC-DC converter for ultra-fast charging of electric vehicles. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Sep 2012, pp LS5d.3–1–LS5d.3–8Google Scholar
  28. 28.
    Chan CC, Chau KT (1997) An overview of power electronics in electric vehicles. IEEE Trans Ind Electron 44(1):3–13CrossRefGoogle Scholar
  29. 29.
    Gomez JC, Morcos MM (2003) Impact of EV battery chargers on the power quality of distribution systems. IEEE Trans Power Del 18(3):975–981CrossRefGoogle Scholar
  30. 30.
    Du Y, Zhou X, Bai S, Lukic S, Huang A (2010) Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks. Palm Springs, CA, USA, Feb 2010, pp 1145–1151Google Scholar
  31. 31.
    Rivera S, Wu B, Kouro S, Yaramasu V, Wang J (2015) Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus. IEEE Trans Ind Electron 62(4):1999–2009CrossRefGoogle Scholar
  32. 32.
    Bai S, Lukic SM (2013) Unified active filter and energy storage system for an MW electric vehicle charging station. IEEE Trans Power Electron 28(12):5793–5803CrossRefGoogle Scholar
  33. 33.
    Williamson SS, Rathore AK, Musavi F (2015) Industrial electronics for electric transportation: current state-of-the-art and future challenges. IEEE Trans Ind Electron 62(5):3021–3032CrossRefGoogle Scholar
  34. 34.
    Kakigano H, Miura Y, Ise T (2010) Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075CrossRefGoogle Scholar
  35. 35.
    Sannino A, Postiglione G, Bollen MHJ (2003) Feasibility of a DC network for commercial facilities. IEEE Trans Ind Appl 39(5):1499–1507CrossRefGoogle Scholar
  36. 36.
    Ito Y, Zhongqing Y, Akagi H (2004) DC micro-grid based distribution power generation system. 3:1740–1745Google Scholar
  37. 37.
    CHAdeMO Association. CHAdeMO Association & Protocol. Accessed Jul 2016
  38. 38.
    Dusmez S, Cook A, Khaligh A (2011) Comprehensive analysis of high quality power converters for level 3 off-board chargers. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, Sep 2011, pp 1–10Google Scholar
  39. 39.
    Wilson JWA (1978) The forced-commutated inverter as a regenerative rectifier. IEEE Trans Ind Appl IA-14(4):335–340CrossRefGoogle Scholar
  40. 40.
    Bin W (2006) High-power converters and AC drives. Wiley-IEEE Press, Chichester, West SussexGoogle Scholar
  41. 41.
    Marian P. Kazmierkowski, Ramu Krishnan, Frede Blaabjerg (eds) (2002) Control in power electronics: selected problems. Academic Press, New YorkGoogle Scholar
  42. 42.
    Rodriguez J, Cortes P (2012) Predictive control of power converters and electrical drives. Wiley-IEEE Press, Chichester, West SussexCrossRefGoogle Scholar
  43. 43.
    Kolar JW, Ertl H, Zach FC (1996) Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (Vienna) rectifier employing a novel integrated power semiconductor module. In: Applied Power Electronics Conference and Exposition, 1996. APEC’96. Conference Proceedings 1996, Eleventh Annual, vol 2, pp 514–523Google Scholar
  44. 44.
    Bai S, Lukic SM (2013) New method to achieve ac harmonic elimination and energy storage integration for 12-pulse diode rectifiers. IEEE Trans Ind Electron 60(7):2547–2554CrossRefGoogle Scholar
  45. 45.
    Garcia O, Zumel P, De Castro A, Cobos JA (2006) Automotive dc-dc bidirectional converter made with many interleaved buck stages. IEEE Trans Power Electron 21(3):578–586CrossRefGoogle Scholar
  46. 46.
    Kutkut NH, Divan DM, Novotny DW, Marion RH (1998) Design considerations and topology selection for a 120-kw IGBT converter for EV fast charging. IEEE Trans Power Electron 13(1):169–178CrossRefGoogle Scholar
  47. 47.
    Pahlevaninezhad M, Das P, Drobnik J, Jain PK, Bakhshai A (2012) A novel ZVZCS full-bridge DC/DC converter used for electric vehicles. IEEE Trans Power Electron 27(6):2752–2769CrossRefGoogle Scholar
  48. 48.
    International Energy Agency (2015) Hybrid and electric vehicles annual report. Accessed May 2015
  49. 49.
    Dickerman L, Harrison J (2010) A new car, a new grid. IEEE Power Energy Mag 8(2):55–61CrossRefGoogle Scholar
  50. 50.
    Mohagheghi S, Parkhideh B, Bhattacharya S (2012) Inductive power transfer for electric vehicles: potential benefits for the distribution grid. In: Electric Vehicle Conference (IEVC), 2012 I.E. International, 2012, pp 1–8Google Scholar
  51. 51.
    Plugs, socket-outlets, vehicle connectors and vehicle inlets—conductive charging of electric vehicles—part 2: dimensional compatibility and interchangeability requirements for a.c. pin and contact-tube accessories (2011) IEC 62196–2, Oct 2011Google Scholar
  52. 52.
    Botsford C, Szczepanek A (2009) Fast charging vs. slow charging: pros and cons for the new age of electric vehicles. In: Battery, hybrid and fuel cell electric vehicle symposium (EVS), 2009 24th International, May 2009Google Scholar
  53. 53.
    Malinowski M (2001) Sensorless control strategies for three-phase PWM rectifiers. PhD thesis, Warsaw University of TechnologyGoogle Scholar
  54. 54.
    Blaschke F (1972) The process of feldorientirung to regleung the asynchronous machine. Siemens researchers Dev 1 (1): 184-193Google Scholar
  55. 55.
    Rodriguez J, Franquelo LG, Kouro S, Leon JI, Portillo RC, Prats MAM, Perez MA (2009) Multilevel converters: an enabling technology for high-power applications. Proceed IEEE 97(11):1786–1817CrossRefGoogle Scholar
  56. 56.
    Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. In: Industrial electronics, control and instrumentation, 1991. Proceedings. IECON’91, 1991 International Conference on, Oct/Nov 1991, vol 1, pp 819–824Google Scholar
  57. 57.
    Malinowski M, Kazmierkowski MP, Hansen S, Blaabjerg F, Marques GD (2001) Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Trans Ind Appl 37(4):1019–1027CrossRefGoogle Scholar
  58. 58.
    Serpa LA, Barbosa PM, Steimer PK, Kolar JW (2008) Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. In: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun 2008, pp 1668–1674Google Scholar
  59. 59.
    Serpa LA, Kolar JW (2007) Virtual-flux direct power control for mains connected three-level NPC inverter systems. In: Power conversion conference—Nagoya, 2007. PCC ’07. pp 130–136Google Scholar
  60. 60.
    Eloy-García J, Arnaltes S, Rodríguez-Amenedo JL (2007) Extended direct power control for multilevel inverters including dc link middle point voltage control. IET Electron Power Appl 1(4):571–580CrossRefGoogle Scholar
  61. 61.
    Rivera S, Kouro S, Wu B, Alepuz S, Malinowski M, Cortes P, Rodriguez J (2014) Multilevel direct power control—a generalized approach for grid-tied multilevel converter applications. IEEE Trans Power Electron 29(10):5592–5604CrossRefGoogle Scholar
  62. 62.
    Kar NC, Iyer KLV, Labak A, Lu X, Lai C, Balamurali A, Esteban B, Sid-Ahmed M (2013) Courting and sparking: wooing consumers? Interest in the EV market. IEEE Electr Mag 1(1):21–31CrossRefGoogle Scholar
  63. 63.
    Lukic S, Pantic Z (2013) Cutting the cord: static and dynamic inductive wireless charging of electric vehicles. IEEE Electr Mag 1(1):57–64CrossRefGoogle Scholar
  64. 64.
    Pedder DAG, Brown AD, Skinner JA (1999) A contactless electrical energy transmission system. IEEE Trans Ind Electron 46(1):23–30CrossRefGoogle Scholar
  65. 65.
    Wang C-S, Stielau OH, Covic GA (2005) Design considerations for a contactless electric vehicle battery charger. IEEE Trans Ind Electron 52(5):1308–1314CrossRefGoogle Scholar
  66. 66.
    Green AW, Boys JT (1994) 10 khz inductively coupled power transfer-concept and control. In: Power Electronics and Variable-Speed Drives, 1994. Fifth International Conference on, Oct 1994, pp 694–699Google Scholar
  67. 67.
    Pantic Z, Bai S, Lukic SM (2009) Inductively coupled power transfer for continuously powered electric vehicles. In: Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE, Sept 2009, pp 1271–1278Google Scholar
  68. 68.
    Huh J, Lee SW, Lee WY, Cho GH, Rim CT (2011) Narrow-width inductive power transfer system for online electrical vehicles. IEEE Trans Power Electron 26(12):3666–3679CrossRefGoogle Scholar
  69. 69.
    Shin J, Shin S, Kim Y, Ahn S, Lee S, Jung G, Jeon S-J, Cho D-H (2014) Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles. IEEE Trans Ind Electron 61(3):1179–1192CrossRefGoogle Scholar
  70. 70.
    Vasiladiotis M, Rufer A (2015) A modular multiport power electronic transformer with integrated split battery energy storage for versatile ultrafast EV charging stations. IEEE Trans Ind Electron 62(5):3213–3222CrossRefGoogle Scholar
  71. 71.
    Abu-Rub H, Holtz J, Rodriguez J, Baoming G (2010) Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications. IEEE Trans Ind Electron 57(8):2581–2596CrossRefGoogle Scholar
  72. 72.
    Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R (2015) Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans Power Electron 30(1):4–17CrossRefGoogle Scholar
  73. 73.
    Tsirinomeny M, Rufer A (2015) Configurable modular multilevel converter (CMMC) for flexible EV. In: Power Electronics and Applications (EPE’15 ECCE-Europe), 2015 17th European Conference on, Sept 2015, pp 1–10Google Scholar
  74. 74.
    Nabae A, Takahashi I, Akagi H (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl IA-17(5):518–523CrossRefGoogle Scholar
  75. 75.
    Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580CrossRefGoogle Scholar
  76. 76.
    Tan L, Wu B, Rivera S, Yaramasu V (2015) Comprehensive dc power balance management in high-power three-level dc-dc converter for electric vehicle fast charging. IEEE Trans Power Electron 31(1):89–100, Jan 2016Google Scholar
  77. 77.
    Rivera S, Wu B, Kouro S (2014) Distributed DC bus EV charging station using a single DC-link H-bridge multilevel converter. In: 2014 I.E. 23rd International Symposium on Industrial Electronics (ISIE), June 2014, pp 1496–1501Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada
  2. 2.Technical University Federico Santa MariaValparaisoChile
  3. 3.Ryerson UniversityTorontoCanada

Personalised recommendations