Skip to main content

Precision Drugs and Cell-Specific Drug Delivery

  • Chapter
  • First Online:
Intracellular Delivery III

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Precision medicine is an approach to prevent and treat disease that takes into account people’s individual variations in genes, environment, and lifestyle. The current Precision Medicine Initiative of the US Government is to: “generate the scientific evidence needed to move the concept of precision medicine into clinical practice”. In the first approximation, precision medicine may provide a more accurate diagnosis of the disease, but may not have the means to offer an improved therapy.

The aim of drug targeting is to generate pharmacologically effective drug concentration at the site of disease while keeping a very low/minimal drug concentration in the rest of the body, away from the site of disease. Targeted drugs are thus “precision drugs” needed to bring precision medicine into the clinical practice.

Focusing on the area of cancer therapy, this review examines the essential requirements that must be met for tumor-cell-targeted drug-delivery systems to work. It examines the progress to date and draws conclusions to offer an optimal paradigm for future drug-delivery systems’ development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abs:

Antibodies

ADC:

Antibody-Drug Conjugate

AML:

Acute Myeloid Leukemia

CD:

Cluster of Differentiation

IC50 :

The half maximal inhibitory concentration

PMI:

Precision Medicine Initiative

TAA:

Tumor-Associated Antigen

TSA:

Tumor-Specific Antigen

US:

United States

VEGF:

Vascular Endothelial Growth Factor

VEGFR:

Vascular Endothelial Growth Factor Receptor

References

  • Abramson R (2016) Overview of targeted therapies for cancer. My cancer genome https://www.mycancergenome.org/content/molecular-medicine/overview-of-targeted-therapies-for-cancer/

  • Barrett CL, Schwab RB, Jung H, Crain B, Goff DJ, Jamieson CH, Thistlethwaite PA, Harismendy O, Carson DA, Frazer KA (2013) Transcriptome sequencing of tumor subpopulations reveals a spectrum of therapeutic options for squamous cell lung cancer. PLoS One 8(3):e58714. doi:10.1371/journal.pone.0058714, Epub 20 Mar 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett CL, DeBoever C, Jepsen K, Saenz CC, Carson DA, Frazer KA (2015) Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc Natl Acad Sci U S A 112(23):E3050–E3057. doi:10.1073/pnas.1508057112, Epub 26 May 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck A, Wurch T, Bailly C, Corvaia N (2010) Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 10:345–352

    Article  CAS  PubMed  Google Scholar 

  • Boddy A, Aaron L, Petrak K (1989) Efficiency of drug targeting: steady-state considerations using a three-compartment model. Pharm Res 6(5):367–372

    Article  CAS  PubMed  Google Scholar 

  • Cañadas I, Rojo F, Arumí-Uría M, Rovira A, Albanell J, Arriola E (2010) C-MET as a new therapeutic target for the development of novel anticancer drugs. Clin Transl Oncol 12:253–260

    Article  PubMed  Google Scholar 

  • Deckert PM (2009) Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targets 10:158–175

    Article  CAS  PubMed  Google Scholar 

  • FDA Drug Approval Package (2011) ADCETRIS (brentuximab vedotin), Seattle Genetics, Inc., Application No.: 125399 http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/125399_adcetris_toc.cfm

  • FDA Drug Approval Package (2013) Kadcyla (ado-trastuzumab emtansine) Injection, Genentech, Inc., Application No.: 125427 http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000TOC.cfm

  • Ehrlich P (1954) The partial function of cells. Int Arch Allergy Appl Immunol 5:67–86

    Article  CAS  PubMed  Google Scholar 

  • Fujimori K, Covell DG, Fletcher JE, Weinstein JN (1990) A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 31(7):1191–1198

    CAS  PubMed  Google Scholar 

  • Garcia-Carbonero R, Supko JG (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661

    CAS  PubMed  Google Scholar 

  • Giusti K (2016) http://www.forbes.com/sites/matthewherper/2016/02/29/5-reasons-to-be-optimistic-about-the-precision-medicine-initiative/#208621091eda

  • Huang D, Lan H, Liu F, Wang S, Chen X, Jin K, Mou X (2015) Anti-angiogenesis or pro-angiogenesis for cancer treatment: focus on drug distribution. Int J Clin Exp Med 15;8(6):8369–8376. eCollection

    Google Scholar 

  • Hudis CA (2007) Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  • Jefferson E (2010) FDA: Pfizer voluntarily withdraws cancer treatment mylotarg from U.S. Market, http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm216448.htm

  • Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33:733–735. doi:10.1038/nbt

    Article  CAS  PubMed  Google Scholar 

  • Mu L, Elbayoumi TA, Karkala A, Erdogan S, Dabholkar RD, Levchenko TS, Mongayt DA, Torchilin VP (2005). Microencapsulation of poorly soluble anti-cancer drugs into micelles made of polyethylene glycol-phosphatidyl ethanolamine (Peg-Pe) conjugates. In: 15th international symposium on microencapsulation, Parma (Italy), 18–21 September 2005

    Google Scholar 

  • NCI Dictionary of Cancer Terms (2015) http://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=44628

  • Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6(1):34–45. Published online 1 Nov 2013. doi: 10.4161/mabs.27022

    Google Scholar 

  • Petrak K (2005) Essential properties of drug-targeting delivery systems. Drug Discov Today 10:1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Petrak K (2006) Nanotechnology and site-targeted drug delivery. J Biomater Sci in Special Issue on Nanobiomaterials (Vasif Hasirci, Karel Petrak (eds)), 17(11), 1209–1221

    Google Scholar 

  • Petrak K (2012) Targeted drug delivery—Quo Vadis? Drug Dev Res 73(2) 59–65. Article first published online: 29 Dec 2011. DOI: 10.1002/ddr.20492

    Google Scholar 

  • Petrak K (2013) Targeting drug-delivery systems: promises, promises, and more promises. Let’s change the paradigm. In: Valerio V (ed) Recent advances in drug delivery research., pp 167–180

    Google Scholar 

  • Petrak K (2015a) Precision medicine and site-specific drug delivery. Adv Cancer Res 3(3), No 3:26, 1–4

    Google Scholar 

  • Petrak K (2015b) The “Magic Bullets” for drug delivery? Int J Drug Dev Res 7:26–28

    Google Scholar 

  • Pillay V, Gan HK, Scott AM (2011) Antibodies in oncology. Nat Biotechnol 28:518–529

    CAS  Google Scholar 

  • Polson AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, de Sauvage FJ, Eaton D, Elkins K, Elliott JM (2009) Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 69:2358–2364. doi:10.1158/0008-5472.CAN-08-2250

    Article  CAS  PubMed  Google Scholar 

  • Rowland AJ, Pietersz GA, McKenzie IFC (1993) Preclinical investigation of the antitumor effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother 37(3):195–202

    Article  CAS  PubMed  Google Scholar 

  • Scartozzi M, Bianconi M, Maccaroni E, Giampieri R, Berardi R, Cascinu S (2010) Dalotuzumab, a recombinant humanized mAb targeted against IGFR1 for the treatment of cancer. Curr Opin Mol Ther 12:361–371

    CAS  PubMed  Google Scholar 

  • Schliemann C, Neri D (2010) Antibody-based vascular tumor targeting. Recent Results Cancer Res 180:201–216

    Article  CAS  PubMed  Google Scholar 

  • Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, Linggi B, Kalra A, Paragas V, Bukhalid R, Grantcharova V, Kohli N, West KA, Leszczyniecka M, Feldhaus MJ, Kudla AJ, Nielsen UB (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor–PI3K axis. Sci Signal 2:ra31

    Article  PubMed  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  • Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74

    Article  CAS  PubMed  Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulation. Int J Pharm 235:179–192

    Article  CAS  PubMed  Google Scholar 

  • Van den Eynde BJ, Scott AM (1998) In: Roitt DPJ, Roitt IM (eds) Encyclopedia of immunology. Academic, London, pp 2424–2431

    Chapter  Google Scholar 

  • Van der Jeught K, Bialkowski L, Daszkiewicz L, Broos K, Goyvaerts C, Renmans D, Van Lint S, Heirman C, Thielemans K, Breckpot K (2015) Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget, 6(3):1359–1381, 30 Jan

    Google Scholar 

  • Vesely MD, Schreiber RD (2013) Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci 1284:1–5. doi:10.1111/nyas.12105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarour HM, DeLeo A, Olivera J, Finn OJ, Storkus WJ (2003) Categories of tumor antigens. In: Holland-Frei cancer medicine, 6th edn. BC Decker Inc, Hamilton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Petrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrak, K. (2016). Precision Drugs and Cell-Specific Drug Delivery. In: Prokop, A., Weissig, V. (eds) Intracellular Delivery III. Fundamental Biomedical Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-43525-1_2

Download citation

Publish with us

Policies and ethics