Advertisement

Artificial Neural Network Based Compliant Control for Robot Arms

  • Vince Jankovics
  • Stefan Mátéfi-Tempfli
  • Poramate Manoonpong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9825)

Abstract

The aim of this paper is to present an artificial neural network (ANN) based adaptive nonlinear control approach of a robot arm, with highlight on its capability as a compliant control scheme. The approach is based on a computed torque law and consists of two main components: a feedforward controller (approximated by the ANN) and a proportional-derivative (PD) feedback loop. Here, the feedforward controller is used to approximate the nonlinear system dynamics and can also adapt to the long-term dynamics of the arm while the PD feedback loop can be tuned to obtain proper compliant behaviour to deal with instantaneous disturbances (e.g., collisions). The employed controller structure makes it possible to decouple these two components for individual parameter adjustments. The performance of the control approach is evaluated and demonstrated in physical simulation which shows promising results.

Keywords

Nonlinear control Artificial neural network Compliance Robot arm 

References

  1. 1.
    Haddadin, S., Albu-Schäffer, A., Luca, A.D., Hirzinger, G.: Collision detection and reaction: a contribution to safe physical human-robot interaction. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3356–3363. IEEE (2008)Google Scholar
  2. 2.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)CrossRefGoogle Scholar
  3. 3.
    Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for control systems - a survey. Automatica 28(6), 1083–1112 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Isidori, A.: Nonlinear Control Systems. Springer Science & Business Media, New York (2013)zbMATHGoogle Scholar
  5. 5.
    Kröse, B., van der Smagt, P.: An Introduction to Neural Networks, 8th edn. The University of Amsterdam, The Netherlands (1996)Google Scholar
  6. 6.
    Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  7. 7.
    Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control. Marcel Dekker Inc., New York (2004)Google Scholar
  8. 8.
    Lewis, F.L., Yegildirek, A., Liu, K., Member, S.: Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Netw. 7(2), 388–399 (1996)CrossRefGoogle Scholar
  9. 9.
    Lewis, F., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, Boca Raton (1998)Google Scholar
  10. 10.
    Luca, A., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630. IEEE, October 2006Google Scholar
  11. 11.
    Martius, G., Hesse, F., Güttler, F., Der, R.: LPZROBOTS: a free and powerful robot simulator (2010). http://robot.informatik.uni-leipzig.de/software
  12. 12.
    Miller, W.T., Werbos, P.J., Sutton, R.S.: Neural Networks for Control. MIT Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Omidvar, O., Elliott, D.L.: Neural Systems for Control. Elsevier, Amsterdam (1997)Google Scholar
  14. 14.
    Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 2171–2176. IEEE (2008)Google Scholar
  15. 15.
    Selmic, R.R., Lewis, F.L.: Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans. Neural Netw. 13(3), 745–751 (2002)CrossRefGoogle Scholar
  16. 16.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)CrossRefGoogle Scholar
  17. 17.
    Spall, J.C., Cristion, J.A.: Model-free control of nonlinear stochastic systems with discrete-time measurements. IEEE Trans. Autom. Control 43(9), 1198–1210 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tonietti, G., Schiavi, R., Bicchi, A.: Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: 2005 Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 526–531. IEEE (2005)Google Scholar
  19. 19.
    Xiong, X., Wörgötter, F., Manoonpong, P.: Neuromechanical control for hexapedal robot walking on challenging surfaces and surface classification. Robot. Auton. Syst. 62(12), 1777–1789 (2014)CrossRefGoogle Scholar
  20. 20.
    Xiong, X., Wörgötter, F., Manoonpong, P.: Virtual agonist-antagonist mechanisms produce biological muscle-like functions: an application for robot joint control. Ind. Robot Int. J. 41(4), 340–346 (2014)CrossRefGoogle Scholar
  21. 21.
    Yang, W., Hammoudi, N., Herrmann, G., Lowenberg, M., Chen, X.: Dynamic gain-scheduled control and extended linearisation: extensions, explicit formulae and stability. Int. J. Control 88(1), 163–179 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vince Jankovics
    • 1
  • Stefan Mátéfi-Tempfli
    • 1
  • Poramate Manoonpong
    • 2
  1. 1.The Mads Clausen InstituteUniversity of Southern DenmarkSonderborgDenmark
  2. 2.Embodied AI and Neurorobotics Lab, Center for BioRoboticsThe Maersk Mc-Kinney Moeller Institute, University of Southern DenmarkOdense MDenmark

Personalised recommendations