Follow Flee: A Contingent Mobility Strategy for the Spatial Prisoner’s Dilemma

  • Maud D. Gibbons
  • Colm O’RiordanEmail author
  • Josephine Griffith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9825)


This paper presents results from a series of experimental simulations comparing the performances of mobile strategies of agents participating in the Spatial Prisoner’s Dilemma game. The contingent movement strategies Walk Away and Follow Flee are evaluated and compared in terms of (1) their ability to promote the evolution of cooperation, and (2) their susceptibility to changes in the environmental and evolutionary settings. Results show that the Follow Flee strategy outperforms the Walk Away strategy across a broad range of environment parameter values, and exhibits the ability to invade the rival strategy. We propose that the Follow Flee movement strategy is successful due to its ability to pro-actively generate and maintain mutually cooperative relationships.


Artificial life Evolutionary game theory Contingent mobility 



This work is funded by the Hardiman Research Scholarship, NUI Galway.


  1. 1.
    Aktipis, C.A.: Know when to walk away: contingent movement and the evolution of cooperation. J. Theor. Biol. 231(2), 249–260 (2004)CrossRefGoogle Scholar
  2. 2.
    Antonioni, A., Tomassini, M., Buesser, P.: Random diffusion and cooperation in continuous two-dimensional space. J. Theor. Biol. 344, 40–48 (2014)CrossRefGoogle Scholar
  3. 3.
    Axelrod, R.M.: The Evolution of Cooperation. Basic Books, New York (1984)zbMATHGoogle Scholar
  4. 4.
    Buesser, P., Tomassini, M., Antonioni, A.: Opportunistic migration in spatial evolutionary games. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(4), 042806 (2013)CrossRefGoogle Scholar
  5. 5.
    Enquist, M., Leimar, O.: The evolution of cooperation in mobile organisms. Anim. Behav. 45(4), 747–757 (1993)CrossRefGoogle Scholar
  6. 6.
    Gibbons, M., O’Riordan, C.: Evolution of coordinated behaviour in artificial life simulations. In: Proceedings of the Theory and Practice in Modern Computing, TPMC (2014)Google Scholar
  7. 7.
    Hamilton, I.M., Taborsky, M.: Contingent movement and cooperation evolve under generalized reciprocity. Proc. Biol. Sci. R. Soc. 272(1578), 2259–2267 (2005)CrossRefGoogle Scholar
  8. 8.
    Helbing, D., Yu, W.: Migration as a mechanism to promote cooperation. Adv. Complex Syst. 11(4), 641–652 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Nat. Acad. Sci. U.S.A. 106(10), 3680–3685 (2009)CrossRefGoogle Scholar
  10. 10.
    Joyce, D., Kennison, J., Densmore, O., Guerin, S., Barr, S., Charles, E., Thompson, N.S.: My way or the highway: a more naturalistic model of altruism tested in an iterative prisoners’ dilemma. J. Artif. Soc. Soc. Simul. 9(2), 4 (2006)Google Scholar
  11. 11.
    Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  12. 12.
    Meloni, S., Buscarino, A., Fortuna, L., Frasca, M., Gómez-Gardeñes, J., Latora, V., Moreno, Y.: Effects of mobility in a population of prisoner’s dilemma players. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(6), 3–6 (2009)CrossRefGoogle Scholar
  13. 13.
    Nowak, M., Sigmund, K., et al.: A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s dilemma game. Nature 364(6432), 56–58 (1993)CrossRefGoogle Scholar
  14. 14.
    Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–3 (2006)CrossRefGoogle Scholar
  15. 15.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)CrossRefGoogle Scholar
  16. 16.
    Sicardi, E.A., Fort, H., Vainstein, M.H., Arenzon, J.J.: Random mobility and spatial structure often enhance cooperation. J. Theor. Biol. 256(2), 240–246 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vainstein, M.H., Arenzon, J.J.: Spatial social dilemmas: dilution, mobility and grouping effects with imitation dynamics. Physica A Stat. Mech. Appl. 394, 145–157 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vainstein, M.H., Silva, A.T.C., Arenzon, J.J.: Does mobility decrease cooperation? J. Theor. Biol. 244(4), 722–728 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yang, H.X., Wu, Z.X., Wang, B.H.: Role of aspiration-induced migration in cooperation. Physic. Rev. E Stat. Nonlin. Soft Matter Phys. 81(6), 1–4 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maud D. Gibbons
    • 1
  • Colm O’Riordan
    • 1
    Email author
  • Josephine Griffith
    • 1
  1. 1.National University of IrelandGalwayIreland

Personalised recommendations