Advertisement

Generalising Predictable Object Movements Through Experience Using Schemas

  • Suresh Kumar
  • Patricia Shaw
  • Daniel Lewkowicz
  • Alexandros Giagkos
  • Mark Lee
  • Qiang Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9825)

Abstract

In humans, repeated exposure to the effects of events can lead to anticipation of these effects. This behaviour has been observed in infants from as young as 3 months old. During infant experiments, the infants have been observed to predict either by pre-saccadic movements or reach actions according to the expected future outcome of the event. Event anticipation or prediction is necessary for such behaviours. In this paper we demonstrate prediction of object motion events using the adaptive learning tool Dev-PSchema. Results shows that the system is able to predict the linear motion outcome of the visual event using generalised schemas.

Keywords

Developmental robotics Psychologically inspired Action prediction 

Notes

Acknowledgements

This research is supported by the Aberystwyth University Doctoral Training Programme, Sukkur IBA (Pakistan) Faculty Development Program and the UK Engineering and Physical Sciences Research Council (EPSRC), grant No. EP/M013510/1. We are grateful for contributions from our recent research colleagues, in particularly Dr. Michael Sheldon, for the development of the PSchema tool.

References

  1. 1.
    Adler, S.A., Haith, M.M.: The nature of infants’ visual expectations for event content. Infancy 4(3), 389–421 (2003)CrossRefGoogle Scholar
  2. 2.
    Aguilar, W., y Pérez, R.P.: Dev ER: a computational model of early cognitive development as a creative process. Cogn. Syst. Res. 33, 17–41 (2015)CrossRefGoogle Scholar
  3. 3.
    Canfield, R.L., Haith, M.M.: Young infants’ visual expectations for symmetric and asymmetric stimulus sequences. Dev. Psychol. 27(2), 198 (1991)CrossRefGoogle Scholar
  4. 4.
    Cangelosi, A., Schlesinger, M., Smith, L.B.: Developmental Robotics: From Babies to Robots. MIT Press, Cambridge (2015)Google Scholar
  5. 5.
    Claxton, L.J., Keen, R., McCarty, M.E.: Evidence of motor planning in infant reaching behavior. Psychol. Sci. 14(4), 354–356 (2003)CrossRefGoogle Scholar
  6. 6.
    Demiris, Y.: Prediction of intent in robotics and multi-agent systems. Cogn. Process. 8(3), 151–158 (2007)CrossRefGoogle Scholar
  7. 7.
    Geib, C., Mourao, K., Petrick, R., Pugeault, N., Steedman, M., Krueger, N., Wörgötter, F.: Object action complexes as an interface for planning and robot control. In: IEEE RAS International Conference on Humanoid Robots (2006)Google Scholar
  8. 8.
    Hermans, T., Rehg, J.M., Bobick, A.: Affordance prediction via learned object attributes. In: IEEE International Conference on Robotics and Automation (ICRA): Workshop on Semantic Perception, Mapping, and Exploration. Citeseer (2011)Google Scholar
  9. 9.
    von Hofsten, C., Vishton, P., Spelke, E.S., Feng, Q., Rosander, K.: Predictive action in infancy: tracking and reaching for moving objects. Cognition 67(3), 255–285 (1998)CrossRefGoogle Scholar
  10. 10.
    Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter, F., Ude, A., Asfour, T., Kraft, D., Omrčen, D., et al.: Object-action complexes: grounded abstractions of sensory-motor processes. Robot. Auton. Syst. 59(10), 740–757 (2011)CrossRefGoogle Scholar
  11. 11.
    Paulus, M., Hunnius, S., van Wijngaarden, C., Vrins, S., van Rooij, I., Bekkering, H.: The role of frequency information and teleological reasoning in infants’ and adults’ action prediction. Dev. Psychol. 47(4), 976 (2011)CrossRefGoogle Scholar
  12. 12.
    Pezzulo, G.: Coordinating with the future: the anticipatory nature of representation. Minds Mach. 18(2), 179–225 (2008)CrossRefGoogle Scholar
  13. 13.
    Piaget, J., Cook, M., Norton, W.: The Origins of Intelligence in Children, vol. 8. International Universities Press, New York (1952)CrossRefGoogle Scholar
  14. 14.
    Schlesinger, M., Casey, P.: Visual Expectations in Infants: Evaluating the Gaze-Direction Model. Lund University Cognitive Studies (2003)Google Scholar
  15. 15.
    Schlesinger, M., Langer, J.: Infants’ developing expectations of possible and impossible tool-use events between ages 8 and 12 months. Dev. Sci. 2(2), 195–205 (1999)CrossRefGoogle Scholar
  16. 16.
    Sheldon, M.: Intrinsically motivated developmental learning of communication in robotic agents. Ph.D. thesis, Aberystwyth University (2013)Google Scholar
  17. 17.
    Sheldon, M., Lee, M.: Pschema: A developmental schema learning framework for embodied agents. In: 2011 IEEE International Conference on Development and Learning (ICDL), vol. 2, pp. 1–7. IEEE (2011)Google Scholar
  18. 18.
    Wörgötter, F., Agostini, A., Krüger, N., Shylo, N., Porr, B.: Cognitive agents-a procedural perspective relying on the predictability of Object-Action-Complexes (OACs). Robot. Auton. Syst. 57(4), 420–432 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Suresh Kumar
    • 1
    • 2
  • Patricia Shaw
    • 1
  • Daniel Lewkowicz
    • 1
  • Alexandros Giagkos
    • 1
  • Mark Lee
    • 1
  • Qiang Shen
    • 1
  1. 1.Department of Computer ScienceAberystwyth UniversityAberystwythUK
  2. 2.Sukkur Institute of Business Administration-Sukkur IBASukkurPakistan

Personalised recommendations