A Biologically Inspired Soft Robotic Hand Using Chopsticks for Grasping Tasks

  • Mariya Chepisheva
  • Utku Culha
  • Fumiya Iida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9825)


In this paper we investigate the dexterity of human manipulation capabilities by using a soft robotic hand. We built a robotic hand based on our inspiration from the real human’s, which is capable of handling chopsticks for grasping variations of objects. The robotic hand is made of soft structures, by using anthropomorphic configurations of bones, joints, ligaments, and tendons, that are connected to a minimum set of motor components, i.e. only four servomotors. By developing a minimalistic physics model of chopstick handling and its simulation experiments, we have identified one of the necessary conditions of actuation which enables the robot to grasp variations of small objects, those with different shape, size and weight.


Biomimetics Robot hand Soft Robotics 



This research was supported by the RoboSoft: Coordination Action for Soft Robotics, funded by the European Commission under the Future and Emerging Technologies (FP7-ICT-2013-C project No 619319), and the Cambridge Commonwealth, European and International Trust.


  1. 1.
    Culha, U., Iida, F.: Enhancement of finger motion range with compliant anthropomorphic joint design. Bioinspiration Biomimetics 11(2), 026001 (2016)CrossRefGoogle Scholar
  2. 2.
    Salisbury, J.K., Craig, J.J.: Articulated hands force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  3. 3.
    Townsend, W.: The barretthand grasper-programmably flexible part handling and assembly. Industr. Robot Int. J. 27(3), 181–188 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)CrossRefGoogle Scholar
  5. 5.
    Lovchik, C.S., Diftler, M.A.: The Robonaut hand: a dexterous robot hand for space. In: IEEE International Conference on Robotics and Automation, pp. 907–912 (1999)Google Scholar
  6. 6.
    Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design of the Utah/MIT dextrous hand. In: IEEE International Conference on Robotics and Automation, pp. 1520–1532 (1986)Google Scholar
  7. 7.
    Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M.H., Chen, Z.P.: Multisensory five-finger dexterous hand: the DLR/HIT hand II. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3692–3697 (2008)Google Scholar
  8. 8.
    Deshpande, A.D., Xu, Z., Vande Weghe, M.J., Brown, B.H., Ko, J., Chang, L.Y., Matsuoka, Y.: Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 18, 238–250 (2013)CrossRefGoogle Scholar
  9. 9.
    Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theor. 13(1), 351–359 (1978)CrossRefGoogle Scholar
  10. 10.
    Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT softHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRefGoogle Scholar
  11. 11.
    Gaiser, I., Schulz, S., Kargov, A., Klosek, H., Bierbaum, A., Pylatiuk, C., Dillmann, R.: A new anthropomorphic robotic hand. In: IEEE-RAS International Conference on Humanoid Robots, pp. 418–422 (2008)Google Scholar
  12. 12.
    Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)CrossRefGoogle Scholar
  13. 13.
    Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRefGoogle Scholar
  14. 14.
    Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)CrossRefGoogle Scholar
  15. 15.
    Chen, W., Xiong, C., Yue, S.: Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand. IEEE/ASME Trans. Mechatron. 20(3), 1–15 (2014)Google Scholar
  16. 16.
    Fukaya, N., Asfour, T., Dillmann, R., Toyama, S.: Development of a five-finger dexterous hand without feedback control: the TUAT/Karlsruhe humanoid hand. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4533–4540 (2013)Google Scholar
  17. 17.
    Xu, Z., Kumar, V., Todorov, E.: A low-cost and modular, 20-DOF anthropomorphic robotic hand: design, actuation and modeling. In: IEEE-RAS International Conference on Humanoid Robots, pp. 368–375 (2013)Google Scholar
  18. 18.
    Jiang, L., Low, K., Costa, J., Black, R.J., Park, Y.L.: Fiber optically sensorized multi-fingered robotic hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1763–1768 (2015)Google Scholar
  19. 19.
    Miller, A., Allen, P., Santos, V., Valero-Cuevas, F.: From robotic hands to human hands: a visualization and simulation engine for grasping research. Industr. Robot Int. J. 32(1), 55–63 (2005)CrossRefGoogle Scholar
  20. 20.
    Webb, B.: Can robots make good models of biological behaviour? Behav. Brain Sci. 24(6), 1033–1050 (2001)Google Scholar
  21. 21.
    Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. Artif. Life IV 181, 189 (1994)Google Scholar
  22. 22.
    Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput. Sci. 7, 99–102 (2011)CrossRefGoogle Scholar
  23. 23.
    Ramadan, A.A., Takubo, T., Mae, Y., Oohara, K., Arai, T.: Developmental process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for 3-D manipulation of microscopic objects. IEEE Trans. Industr. Electron. 56(4), 1121–1135 (2009)CrossRefGoogle Scholar
  24. 24.
    Joseph, R.A., Goh, A.C., Cuevas, S.P., Donovan, M.A., Kauffman, M.G., Salas, N.A., Dunkin, B.J.: “Chopstick” surgery: a novel technique improves surgeon performance and eliminates arm collision in robotic single-incision laparoscopic surgery. Surg. Endosc. 24(6), 1331–1335 (2010)CrossRefGoogle Scholar
  25. 25.
    Hsu, S.H., Wu, S.P.: An investigation for determining the optimum length of chopsticks. Appl. Ergon. 22(6), 395–400 (1991)CrossRefGoogle Scholar
  26. 26.
    Yamazaki, A., Masuda, R.: Autonomous foods handling by chopsticks for meal assistant robot. In: German Conference on Robotics, pp. 1–6 (2012)Google Scholar
  27. 27.
    Chang, B.C., Huang, B.S., Chou, C.L., Wang, S.J.: A new type of chopsticks for patients with impaired hand function. Arch. Phys. Med. Rehabil. 87(7), 1013–1015 (2006)CrossRefGoogle Scholar
  28. 28.
    Park, J., Moon, W.: The systematic design and fabrication of a three-chopstick microgripper. Int. J. Adv. Manuf. Technol. 26(3), 251–261 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shrewsbury, M.M., Marzke, M.W., Linscheid, R.L., Reece, S.P.: Comparative morphology of the pollical distal phalanx. Am. J. Phys. Anthropol. 121(1), 30–47 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biologically Inspired Robotics Laboratory, Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations