Skip to main content

A Coupled Atmosphere-Chemistry Data Assimilation: Impact of Ozone Observation on Structure of a Tropical Cyclone

  • Chapter
  • First Online:
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)

Abstract

Ozone (O\(_3\)) generally shows lower concentration inside the eyewall and higher concentration around the eye in tropical cyclones (TCs). In this study, we identify the impact of O\(_3\) observations on TC structure through a coupled atmosphere-chemistry data assimilation (DA) system. We applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and an ensemble-based DA algorithm—the maximum likelihood ensemble filter (MLEF ) to a case TC over East Asia, Typhoon Nabi (2005). The ensemble forecast with 32 ensembles shows larger background state uncertainty over the TC . The assimilation of O\(_3\) observations, with a 6 h assimilation window, impacts both O\(_3\) itself and wind field in the vicinity of TC . Several measures for verification, including the cost function, root mean square (RMS) error with respect to observations and degrees of freedom for signal (DFS), indicate improvement of the analysis fields through the O\(_3\) DA. The cost function and RMS error have decreased by 17 and 9 %, respectively. The DFS shows large reduction in uncertainty, indicating a strong positive impact of observations in the TC area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apodaca K, Županski M, DeMaria M, Knaff JA, Grasso LD (2014) Development of a hybrid variational-ensemble data assimilation technique for observed lightning tested in a mesoscale model. Nonlinear Process Geophys 21:1027–1041

    Article  Google Scholar 

  • Betts AK (2009) Land-surface-atmosphere coupling in observations and models. J Adv Model Earth Syst 1:4. doi:10.3894/JAMES.2009.1.4

  • Borovikov A, Rienecker MM, Keppenne CL, Johnson GC (2005) Multivariate error covariance estimates by Monte Carlo simulation for assimilation studies in the Pacific Ocean. Mon Weather Rev 133:2310–2334

    Article  Google Scholar 

  • Carmichael GR, Sandu A, Chai T, Daescu DN, Constantinescu EM, Tang Y (2008) Predicting air quality: improvements through advanced methods to integrate models and measurements. J Comput Phys 227:3540–3571

    Google Scholar 

  • Carsey TP, Willoughby HE (2005) Ozone measurements from eyewall transects of two Atlantic tropical cyclones. Mon Weather Rev 133:166–174

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrologymodel with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin SJ, Zhang M (2006) The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J Clim 19:2144–2161

    Google Scholar 

  • Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67

    Article  Google Scholar 

  • Freitas SR, Rodrigues LF, Longo KM, Panetta J (2011) Impact of a monotonic advection scheme with low numerical diffusion on transport modeling of emissions from biom ass burning. J Adv Model Earth Syst 3:M01001. doi:10.1029/2011MS000084

  • Grell G, Peckham S, Schmitz R, McKeen S, Frost G, Skamarock W, Eder B (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39:6957–6975

    Article  CAS  Google Scholar 

  • Han G, Wu X, Zhang S, Liu Z, Li W (2013) Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model. J Climate 26:10218–10231

    Article  Google Scholar 

  • Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42:129–151

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Jang KI, Zou X, De Pondeca MSFV, Shapiro M, Davis C, Krueger A (2003) Incorporating TOMS ozone measurements into the prediction of the Washington, DC, winter storm during 24–25 January 2000. J Appl Meteor 42:797–812

    Article  Google Scholar 

  • Johnson CE, Stevenson DS, Collins WJ, Derwent RG (2001) Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model. Geophys Res Lett 28:1723–1726

    Article  CAS  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: An update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kerkweg A, Jockel P (2012) The 1-way on-line coupled atmospheric chemistry model system MECO(n)—Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy. Geosci Model Dev 5:87–110

    Article  Google Scholar 

  • Kim HH, Park SK, Županski D, Županski M (2010) Uncertainty analysis using the maximum likelihood ensemble filter and WRF and comparison with dropwindsonde observations in Typhoon Sinlaku (2008). Asia-Pac J Atmos Sci 46:317–325

    Article  Google Scholar 

  • Laloyaux P, Balmaseda M, Dee D, Mogensen K, Janssen P (2016) A coupled data assimilation system for climate reanalysis. Q J R Meteor Soc 142:65–78

    Article  Google Scholar 

  • Lim S, Park SK, Županski M (2015) Ensemble data assimilation of total column ozone using a coupled meteorology-chemistry model and its impact on the structure of Typhoon Nabi (2005). Atmos Chem Phys 15:10019–10031

    Article  CAS  Google Scholar 

  • Macias DM, Guerreiro CT, Prieto L, Peliz A, Ruiz J (2014) A high-resolution hydrodynamic-biogeochemical coupled model of the Gulf of Cadiz—Alboran Sea region. Medit Mar Sci 15:739–752

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1953) Dimensionless characteristics of turbulence in the atmospheric surface layer. Dok AN SSSR 93:223–226

    Google Scholar 

  • Navon IM (2009) Data assimilation for numerical weather prediction: a review. In: Park SK, Xu L (eds) Data assimilation for atmospheric oceanic and hydrologic applications. Springer, Berlin, pp 21–65

    Google Scholar 

  • OMI Team (2012) Ozone Monitoring Instrument (OMI) Data User’s Guide. NASA, Greenbelt,break 62 pp

    Google Scholar 

  • Park SK, Županski D (2003) Four-dimensional variational data assimilation for mesoscale and storm-scale applications. Meteor Atmos Phys 82:173–208

    Article  Google Scholar 

  • Park SK, Lim S, Županski M (2015) Structure of forecast error covariance in coupled atmosphere-chemistry data assimilation. Geosci Model Dev 8:1315–1320

    Article  Google Scholar 

  • Reichle RH (2008) Data assimilation methods in the Earth sciences. Adv Water Res 31:1411–1418

    Article  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, Singapore 256 pp

    Book  Google Scholar 

  • Skamarock WC (2006) Positive-definite and monotonic limiters for unrestricted-time-step transport schemes. Mon Weather Rev 134:2241–2250

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR/TN-475+STR, National Center For Atmospheric Research, Boulder, CO, 113 pp

    Google Scholar 

  • Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, Ishikawa Y (2008) Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J Geophys Res 113:C10017. doi:10.1029/2008JC004741

  • Tardif R, Hakim GJ, Snyder C (2014) Coupled atmosphere-ocean data assimilation experiments with a low-order climate model. Clim Dyn 43:1631–1643

    Article  Google Scholar 

  • Tran AP, Vanclooster M, Županski M, Lambot S (2014) Joint estimation of soil moisture profile and hydraulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter. Water Resour Res 50:3131–3146. doi:10.1002/2013WR014583

    Article  Google Scholar 

  • Wang H, Skamarock WC, Feingold G (2009) Evaluation of scalar advection schemes in the Advanced Research WRF model using large-eddy simulations of aerosol-cloud interactions. Mon Weather Rev 137:2547–2558

    Google Scholar 

  • Wu Y, Zou X (2008) Numerical test of a simple approach for using TOMS total ozone data in hurricane environment. Q J R Meteor Soc 134:1397–1408

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564

    Article  Google Scholar 

  • Zhang S, Rosati A, Delworth T (2010) The adequacy of observing systems in monitoring the Atlantic meridional overturning circulation and North Atlantic climate. J Clim 23:5311–5324

    Article  Google Scholar 

  • Zhang S, Zhao M, Lin S-J, Yang X, Anderson W (2014) Retrieval of tropical cyclone statistics with a high-resolution coupled model and data. Geophys Res Lett 41:652–660

    Article  Google Scholar 

  • Zhang SQ, Županski M, Hou AY, Lin X, Cheung SH (2013) Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon Weather Rev 141:754–772

    Article  Google Scholar 

  • Zou X, Wu Y (2005) On the relationship between Total Ozone Mapping Spectrometer (TOMS) ozone and hurricanes. J Geophys Res 110:D06109. doi:10.1029/2004JD005019

  • Županski D, Županski M (2006) Model error estimation employing an ensemble data assimilation approach. Mon Weather Rev 134:1337–1354

    Article  Google Scholar 

  • Županski D, Hou AY, Zhang SQ, Županski M, Kummerow CD, Cheung SH (2007) Applications of information theory in ensemble data assimilation. Q J R Meteor Soc 133:1533–1545

    Article  Google Scholar 

  • Županski M (1993) Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon Weather Rev 121:2396–2408

    Article  Google Scholar 

  • Županski M (2005) Maximum likelihood ensemble filter: theoretical aspects. Mon Weather Rev 133:1710–1726

    Article  Google Scholar 

  • Županski M (2016) Data assimilation for coupled modeling systems. In: Park SK, Xu L (eds) Data assimilation for atmospheric oceanic and hydrologic applications, vol. III. Springer, Berlin, pp xx–xx

    Google Scholar 

  • Županski M, Navon IM, Županski D (2008) The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Q J R Meteor Soc 134:1039–1050

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korea Environmental Industry & Technology Institute through the Eco Innovation Program (ARQ201204015), and partly by the National Research Foundation of Korea grant (No. 2009-0083527) funded by the Korean government (MSIP). The third author acknowledges a partial support from the National Science Foundation Collaboration in Mathematical Geosciences Grant 0930265 and the NASA Modeling, Analysis and Prediction (MAP) Program Grant NNX13AO10G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Ki Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Park, S.K., Lim, S., Županski, M. (2017). A Coupled Atmosphere-Chemistry Data Assimilation: Impact of Ozone Observation on Structure of a Tropical Cyclone. In: Park, S., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III). Springer, Cham. https://doi.org/10.1007/978-3-319-43415-5_20

Download citation

Publish with us

Policies and ethics