The Role of CMV in Immunosenescence

Chapter

Abstract

The term “immunosenescence” is commonly taken to mean age-associated changes in immune parameters hypothesized to contribute to increased susceptibility and severity of the older adult to infectious disease, autoimmunity and cancer. In humans, it is characterized by lower numbers and frequencies of naïve T and B cells and higher numbers and frequencies of late-differentiated T cells, especially CD8+ T cells, in the peripheral blood. The latter may be very noticeable, but intriguingly, only in people infected by human herpesvirus 5 (Cytomegalovirus, CMV). Almost all human studies have been cross-sectional, thus documenting differences between old and young populations, but not necessarily changes over time. Nonetheless, limited longitudinal studies have provided data consistent with gradually decreasing naïve T and B cells, and increasing late-differentiated T cells over time, and in rare instances associating these changes with increasing frailty and incipient mortality in the elderly. Low numbers of naïve cells render the aged highly susceptible to pathogens to which they have not been previously exposed, but are not otherwise associated with an “immune risk profile” predicting earlier mortality. Whether the accumulations of late-differentiated T cells driven primarily by CMV contribute to frailty and mortality or are only adaptive responses to the persistent virus remains controversial. Either way, there is currently little direct evidence that “immunosenescence” contributes to either autoimmunity or cancer in the aged. This chapter reviews some of the studies implicating CMV infection in immunosenescence and its consequences for ageing trajectories in humans.

Keywords

Ageing Immune system CMV Immunosenescence Health Vaccination 

Abbreviations

CCR7

Chemokine receptor 7

CMV

Cytomegalovirus

DC

Dendritic cell

γδ T cells

Gamma-delta T cells

IE-1

Immediate early protein 1

IFN

Interferon

KLRG

Killer lectin-like cell receptor G1

MHC

Major histocompatibility complex

NK cell

Natural killer cell

PBMC

Peripheral blood mononuclear cells

pp65

Tegument protein

TLR

Toll-like receptor

Notes

Acknowledgments

This work was supported by the European Commission under Grant Agreement FP7 259679, Integrated research on developmental determinants of ageing and longevity, “IDEAL” and by an unrestricted educational grant from the Croeni Foundation (to GP).

References

  1. 1.
    Müller L, Pawelec G. As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev. 2015;23(Pt A):116–23.PubMedCrossRefGoogle Scholar
  2. 2.
    Pawelec G. Immunosenescence: role of cytomegalovirus. Exp Gerontol. 2014;54:1–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Fülöp T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immunol Ageing. 2012;9(1):15.CrossRefGoogle Scholar
  5. 5.
    Arens R, Remmerswaal EB, Bosch JA, van Lier RA. 5(th) International Workshop on CMV and Immunosenescence—a shadow of cytomegalovirus infection on immunological memory. Eur J Immunol. 2015;45(4):954–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Meijers RW, Litjens NH, Hesselink DA, Langerak AW, Baan CC, Betjes MG. Primary cytomegalovirus infection significantly impacts circulating T cells in kidney transplant recipients. Am J Transplant. 2015;15(12):3143–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Miles DJ, van der Sande M, Jeffries D, Kaye S, Ismaili J, Ojuola O, et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J Virol. 2007;81(11):5766–76.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dowd JB, Aiello AE, Alley DE. Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect. 2009;137(1):58–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses. 2014;6(3):1049–72.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Boeckh M, Geballe AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest. 2011;121(5):1673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hanley PJ, Bollard CM. Controlling cytomegalovirus: helping the immune system take the lead. Viruses. 2014;6(6):2242–58.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol. 2008;325:417–70.PubMedGoogle Scholar
  13. 13.
    Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev. 2015;pii:S0047-6374(15)30014-2.Google Scholar
  14. 14.
    Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu YL, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalejta RF. Tegument proteins of human cytomegalovirus. Microbiol Mol Biol Rev. 2008;72(2):249–65. table of contents.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Nachmani D, Lankry D, Wolf DG, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol. 2010;11(9):806–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod‘homme V, Aicheler R, et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol. 2008;41(3):206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol. 2009;83(19):9618–29.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Beisser PS, Lavreysen H, Bruggeman CA, Vink C. Chemokines and chemokine receptors encoded by cytomegaloviruses. Curr Top Microbiol Immunol. 2008;325:221–42.PubMedGoogle Scholar
  20. 20.
    McCormick AL. Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol. 2008;325:281–95.PubMedGoogle Scholar
  21. 21.
    Reeves M, Sinclair J. Aspects of human cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol. 2008;325:297–313.PubMedGoogle Scholar
  22. 22.
    Reeves M, Sinclair J. Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter. Viruses. 2013;5(6):1395–413.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee SH, Albright ER, Lee JH, Jacobs D, Kalejta RF. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. Sci Adv. 2015;1(10), e1501164.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Poole E, Sinclair J. Sleepless latency of human cytomegalovirus. Med Microbiol Immunol. 2015;204(3):421–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Liu XF, Wang X, Yan S, Zhang Z, Abecassis M, Hummel M. Epigenetic control of cytomegalovirus latency and reactivation. Viruses. 2013;5(5):1325–45.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Goodrum F, Caviness K, Zagallo P. Human cytomegalovirus persistence. Cell Microbiol. 2012;14(5):644–55.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE, et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol. 2010;185(8):4618–24.PubMedCrossRefGoogle Scholar
  28. 28.
    Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol. 2003;170(4):2022–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim J, Kim AR, Shin EC. Cytomegalovirus Infection and Memory T Cell Inflation. Immune Netw. 2015;15(4):186–90.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol. 2003;38(8):911–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Jackson SE, Mason GM, Okecha G, Sissons JG, Wills MR. Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol. 2014;88(18):10894–908.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gibson L, Dooley S, Trzmielina S, Somasundaran M, Fisher D, Revello MG, et al. Cytomegalovirus (CMV) IE1- and pp 65-specific CD8+ T cell responses broaden over time after primary CMV infection in infants. J Infect Dis. 2007;195(12):1789–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Vieira Braga FA, Hertoghs KM, van Lier RA, van Gisbergen KP. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur J Immunol. 2015;45(9):2433–45.PubMedCrossRefGoogle Scholar
  34. 34.
    Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R. Chronic herpesvirus reactivation occurs in aging. Exp Gerontol. 2007;42(6):563–70.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Beswick M, Pachnio A, Lauder SN, Sweet C, Moss PA. Antiviral therapy can reverse the development of immune senescence in elderly mice with latent cytomegalovirus infection. J Virol. 2013;87(2):779–89.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. 2012;8(8), e1002850.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Pachnio A, Begum J, Fox A, Moss P. Acyclovir therapy reduces the CD4+ T cell response against the immunodominant pp 65 protein from cytomegalovirus in immune competent individuals. PLoS One. 2015;10(4), e0125287.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, et al. Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immunol Ageing. 2016;13:1.CrossRefGoogle Scholar
  39. 39.
    Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–85.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19(1):47–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E. The impact of CMV infection on survival in older humans. Curr Opin Immunol. 2012;24(4):507–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Pawelec G, Derhovanessian E. Role of CMV in immune senescence. Virus Res. 2011;157(2):175–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Adriaensen W, Derhovanessian E, Vaes B, Van Pottelbergh G, Degryse JM, Pawelec G, et al. CD4:8 ratio >5 is associated with a dominant naive T-cell phenotype and impaired physical functioning in CMV-seropositive very elderly people: results from the BELFRAIL study. J Gerontol A Biol Sci Med Sci. 2015;70(2):143–54.PubMedCrossRefGoogle Scholar
  44. 44.
    Pera A, Campos C, Corona A, Sanchez-Correa B, Tarazona R, Larbi A, et al. CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals. PLoS One. 2014;9(2), e88538.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, et al. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med. 2015;7(281):281ra43.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447(7142):326–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 2014;192(5):2143–55.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Turner JE, Campbell JP, Edwards KM, Howarth LJ, Pawelec G, Aldred S, et al. Rudimentary signs of immunosenescence in Cytomegalovirus-seropositive healthy young adults. Age (Dordr). 2014;36(1):287–97.CrossRefGoogle Scholar
  49. 49.
    Gamadia LE, van Leeuwen EM, Remmerswaal EB, Yong SL, Surachno S, Wertheim-van Dillen PM, et al. The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol. 2004;172(10):6107–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Redeker A, Welten SP, Arens R. Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol. 2014;44(4):1046–57.PubMedCrossRefGoogle Scholar
  51. 51.
    O‘Hara GA, Welten SP, Klenerman P, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 2012;33(2):84–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Terrazzini N, Bajwa M, Vita S, Thomas D, Smith H, Vescovini R, et al. Cytomegalovirus infection modulates the phenotype and functional profile of the T-cell immune response to mycobacterial antigens in older life. Exp Gerontol. 2014;54:94–100.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    McElhaney JE, Zhou X, Talbot HK, Soethout E, Bleackley RC, Granville DJ, et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine. 2012;30(12):2060–7.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Riddell NE, Griffiths SJ, Rivino L, King DC, Teo GH, Henson SM, et al. Multifunctional cytomegalovirus (CMV)-specific CD8(+) T cells are not restricted by telomere-related senescence in young or old adults. Immunology. 2015;144(4):549–60.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Roux A, Mourin G, Larsen M, Fastenackels S, Urrutia A, Gorochov G, et al. Differential impact of age and cytomegalovirus infection on the gammadelta T cell compartment. J Immunol. 2013;191(3):1300–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Alejenef A, Pachnio A, Halawi M, Christmas SE, Moss PA, Khan N. Cytomegalovirus drives Vdelta2neg gammadelta T cell inflation in many healthy virus carriers with increasing age. Clin Exp Immunol. 2014;176(3):418–28.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160(1-2):37–47.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):50–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, et al. Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell. 2013;12(3):381–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci. 2005;60(5):556–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell. 2015.Google Scholar
  62. 62.
    Moro-Garcia MA, Alonso-Arias R, Lopez-Vazquez A, Suarez-Garcia FM, Solano-Jaurrieta JJ, Baltar J, et al. Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age (Dordr). 2012;34(2):479–95.CrossRefGoogle Scholar
  63. 63.
    Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6(2), e16103.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Terrazzini N, Bajwa M, Vita S, Cheek E, Thomas D, Seddiki N, et al. A novel cytomegalovirus-induced regulatory-type T-cell subset increases in size during older life and links virus-specific immunity to vascular pathology. J Infect Dis. 2014;209(9):1382–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Wall NA, Chue CD, Edwards NC, Pankhurst T, Harper L, Steeds RP, et al. Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS One. 2013;8(2), e55686.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gow AJ, Firth CM, Harrison R, Starr JM, Moss P, Deary IJ. Cytomegalovirus infection and cognitive abilities in old age. Neurobiol Aging. 2013;34(7):1846–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Rahbar A, Orrego A, Peredo I, Dzabic M, Wolmer-Solberg N, Straat K, et al. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J Clin Virol. 2013;57(1):36–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Wolmer-Solberg N, Baryawno N, Rahbar A, Fuchs D, Odeberg J, Taher C, et al. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer. 2013;133(10):2351–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Stragliotto G, Rahbar A, Solberg NW, Lilja A, Taher C, Orrego A, et al. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer. 2013;133(5):1204–13.PubMedCrossRefGoogle Scholar
  70. 70.
    Frasca D, Blomberg BB. Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum Vaccin Immunother. 2015;12(3):682–90.CrossRefGoogle Scholar
  71. 71.
    Derhovanessian E, Maier AB, Hahnel K, McElhaney JE, Slagboom EP, Pawelec G. Latent infection with cytomegalovirus is associated with poor memory CD4 responses to influenza A core proteins in the elderly. J Immunol. 2014;193(7):3624–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Derhovanessian E, Theeten H, Hahnel K, Van Damme P, Cools N, Pawelec G. Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine. 2013;31(4):685–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, et al. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine. 2003;21(25-26):3826–36.PubMedCrossRefGoogle Scholar
  74. 74.
    Kim TS, Sun J, Braciale TJ. T cell responses during influenza infection: getting and keeping control. Trends Immunol. 2011;32(5):225–31.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ludmila Müller
    • 1
  • Klaus Hamprecht
    • 2
  • Graham Pawelec
    • 3
    • 4
    • 5
  1. 1.Max Planck Institute for Human DevelopmentBerlinGermany
  2. 2.Institute of Medical VirologyUniversity of TübingenTübingenGermany
  3. 3.Center for Medical ResearchUniversity of TübingenTübingenGermany
  4. 4.Division of Cancer Studies, Faculty of Life Sciences and MedicineKing’s College LondonLondonUK
  5. 5.The John van Geest Cancer Research CentreSchool of Science and Technology, Nottingham Trent UniversityNottinghamUK

Personalised recommendations