The DNA Methylome: An Interface Between the Environment, Immunity, and Ageing

  • Lisa M. McEwen
  • Sarah J. Goodman
  • Michael S. Kobor
  • Meaghan J. Jones
Chapter

Abstract

The characteristic effects of ageing observed across the human lifespan are accompanied by a multitude of molecular changes. These age-related changes are a result of the complex interaction between our genetic makeup, lifestyle factors, and unique environments. People are subject to a variety of different exposures; many of these influences have the potential to “mark” our DNA and actually alter our cellular processes. This is a key component of epigenetics: a field that focuses on modifications to DNA and DNA packaging that function without altering the genetic sequence itself. DNA methylation is arguably the most well-characterized epigenetic modification, involving the addition of a methyl group to DNA, which, in an interesting paradox, is both stable long-term as well as plastic and reversible. DNA methylation fluctuates throughout the lifespan of mammalian organisms and has the potential to influence cellular processes through changes in gene expression. An important role of DNA methylation is as a molecular mediator between environmental exposures and physiological changes, which makes it a likely modifier of the immune system. In regards to the ageing process, the actual function of DNA methylation is unknown; however, global trends and site-specific changes in DNA methylation have been strongly correlated with chronological age. Here, we will discuss the particulars of epigenetics, with a focus on DNA methylation and its role in the development, maturation, dysfunction, and ageing of white blood cells of the immune system.

Keywords

Epigenetics DNA methylation Epigenetic Drift Epigenetic Clock Age Acceleration Biological Age Blood Immune system Environment Ageing 

References

  1. 1.
    Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Ziller MJ, Müller F, Liao J, Zhang Y, Gu H, Bock C, et al. Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet. 2011;7(12), e1002389.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.PubMedCrossRefGoogle Scholar
  4. 4.
    He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J. 1993;12(3):1141–51.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Alves G, Tatro A, Fanning T. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene. 1996;176(1-2):39–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007;39(4):457–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time dependent repression of transcription initiation. Curr Biol. 1997;7(3):157–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Jones PA. The DNA, methylation paradox. Trends Genet. 1999;15(1):34–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12(1):R10.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, et al. Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012;109 Suppl 2:17253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Gutierrez Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2, e00523.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Jones MJ, Fejes AP, Kobor MS. DNA methylation, genotype and gene expression: who is driving and who is along for the ride? Genome Biol. 2013;14(7):126.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15(2):R37.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Edgar R, Tan PPC, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin. 2014;7(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhang H, Wang F, Kranzler HR, Yang C, Xu H, Wang Z, et al. Identification of methylation quantitative trait loci (mQTLs) influencing promoter DNA methylation of alcohol dependence risk genes. Hum Genet. 2014;133(9):1093–104.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 2014;10(9), e1004663.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome Biol. 2012;13(2):R8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Maurano MT, Wang H, John S, Shafer A, Canfield T, Lee K, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith AK, Kilaru V, Kocak M, Almli LM, Mercer KB, Ressler KJ, et al. Methylation quantitative trait loci (meQTLs) are consistently detected across ancestry, developmental stage, and tissue type. BMC Genomics. 2014;15:145.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, et al. The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009;5(4):442–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol. 2010;28(10):1079–88. doi:10.1038/nbt.1684. http://www.nature.com/doifinder.PubMedCrossRefGoogle Scholar
  24. 24.
    Calvanese V, Fernandez AF, Urdinguio RG, Suarez-Alvarez B, Mangas C, Pérez-García V, et al. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 2012;40(1):116–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C. DNA methylation: a promising landscape for immune system-related diseases. Trends Genet. 2012;28(10):506–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Álvarez-Errico D, Vento-Tormo R, Sieweke M, Ballestar E. Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol. 2014;15(1):7–17.CrossRefGoogle Scholar
  27. 27.
    Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen S-E, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7), e41361.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell. 2014;15(3):350–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bröske A-M, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41(11):1207–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012;13(6):R43.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LTY, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Farré P, Jones MJ, Meaney MJ, Emberly E, Turecki G, Kobor MS. Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics Chromatin. 2015;8:19.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Koestler DC, Christensen B, Karagas MR, Marsit CJ, Langevin SM, Kelsey KT, et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. Epigenetics. 2013;8(8):816–26.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Guintivano J, Aryee MJ, Kaminsky ZA. A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics. 2013;8(3):290–302.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide association studies without the need for cell-type composition. Nat Methods. 2014;11(3):309–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Cai C, Langfelder P, Fuller TF, Oldham MC, Luo R, van den Berg LH, et al. Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics. 2010;11(1):589.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;10(11):1024–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218(Pt 1):71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Boyce WT, Kobor MS. Development and the epigenome: the “synapse” of gene-environment interplay. Dev Sci. 2015;18(1):1–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.PubMedGoogle Scholar
  44. 44.
    Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, et al. Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics. 2010;5(3):222–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Bollati V, Baccarelli A. Environmental epigenetics. Heredity. 2010;105(1):105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Essex MJ, Boyce WT, Hertzman C, Lam LL, Armstrong JM, Neumann SMA, et al. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. 2013;84(1):58–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Monick MM, Beach SRH, Plume J, Sears R, Gerrard M, Brody GH, et al. Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(2):141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shenker NS, Polidoro S, van Veldhoven K, Sacerdote C, Ricceri F, Birrell MA, et al. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet. 2013;22(5):843–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun. 2015;6:10047.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Esposito EA, Jones MJ, Doom JR, MacIsaac JL, Gunnar MR, Kobor MS. Differential DNA methylation in peripheral blood mononuclear cells in adolescents exposed to significant early but not later childhood adversity. Dev Psychopathol. 2016:1–15.Google Scholar
  51. 51.
    Stringhini S, Polidoro S, Sacerdote C, Kelly RS, van Veldhoven K, Agnoli C, et al. Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol. 2015;44(4):1320–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A. 2009;106(34):14716–21.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai H-J, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31(2):142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q. Impaired DNA methylation and its mechanisms in CD4(+)T cells of systemic lupus erythematosus. J Autoimmun. 2013;41:92–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 2013;9(8), e1003678.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gervin K, Vigeland MD, Mattingsdal M, Hammerø M, Nygård H, Olsen AO, et al. DNA methylation and gene expression changes in monozygotic twins discordant for psoriasis: identification of epigenetically dysregulated genes. PLoS Genet. 2012;8(1), e1002454.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2014;50:33–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Laricade L, Urquiza JM, Gomez-Cabrero D, Islam ABMMK, López-Bigas N, Tegnér J, et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun. 2013;41:6–16.CrossRefGoogle Scholar
  60. 60.
    Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL, Yotova V, et al. Bacterial infection remodels the DNA methylation landscape of human dendritic cells. Genome Res. 2015;25(12):1801–11.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Marr AK, MacIsaac JL, Jiang R, Airo AM, Kobor MS, McMaster WR. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog. 2014;10(10), e1004419. http://dx.plos.org/10.1371/journal.ppat.1004419.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sinclair SHG, Yegnasubramanian S, Dumler JS. Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected human neutrophils. Clin Epigenetics. 2015;7(1):77.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. Am Medical Assoc. 2015;175(6):970–7.Google Scholar
  64. 64.
    Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet. 2006;7(6):436–48.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Goronzy JJ, Li G, Weyand CM. DNA methylation, age-related immune defects, and autoimmunity. Epigenetics of aging. New York: Springer; 2010. p. 327–44.Google Scholar
  66. 66.
    Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 1981;653(2):204–18.PubMedCrossRefGoogle Scholar
  67. 67.
    Hoal-van Helden EG, van Helden PD. Age-related methylation changes in DNA may reflect the proliferative potential of organs. Mutat Res. 1989;219(5-6):263–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Wilson VL, Smith RA, Ma S, Cutler RG. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262(21):9948–51.PubMedGoogle Scholar
  69. 69.
    Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012;109(26):10522–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One. 2013;8(6), e67378.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8), e1000602.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130(4):234–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14(6):924–32.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Boks MP, van Mierlo HC, Rutten BPF, Radstake TRDJ, De Witte L, Geuze E, et al. Longitudinal changes of telomere length and epigenetic age related to traumatic stress and post-traumatic stress disorder. Psychoneuroendocrinology. 2015;51:506–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013;22(R1):R7–15.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Martin GM. Epigenetic drift in aging identical twins. Proc Natl Acad Sci U S A. 2005;102(30):10413–4.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestart ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67.PubMedCrossRefGoogle Scholar
  79. 79.
    Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs M-O, Fañanás L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015;5, e557.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Winnefeld M, Lyko F. The aging epigenome: DNA methylation from the cradle to the grave. Genome Biol. 2012;13(7):165.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12(12):1559–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, et al. Epigenetic predictor of age. PLoS One. 2011;6(6), e14821.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Koch CM, Wagner W. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY). 2011;3(10):1018–27.CrossRefGoogle Scholar
  85. 85.
    Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Levine ME, Lu AT, Bennett DA, Horvath S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY). 2015;7(12):1198–211.CrossRefGoogle Scholar
  87. 87.
    Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, et al. Accelerated epigenetic aging in Down syndrome. Aging Cell. 2015;14(3):491–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    van Eijk KR, de Jong S, Strengman E, Buizer-Voskamp JE, Kahn RS, Boks MP, et al. Identification of schizophrenia-associated loci by combining DNA methylation and gene expression data from whole blood. Eur J Hum Genet. 2015;23(8):1106–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Wolf EJ, Logue MW, Hayes JP, Sadeh N, Schichman SA, Stone A, et al. Accelerated DNA methylation age: Associations with PTSD and neural integrity. Psychoneuroendocrinology. 2015;63:155–62.PubMedCrossRefGoogle Scholar
  90. 90.
    Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis. 2015;212(10):1563–73.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Rickabaugh TM, Baxter RM, et al. Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One. 2015;10(3), e0119201. http://dx.plos.org/10.1371/journal.pone.0119201.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY). 2015;7(12):1130–42.CrossRefGoogle Scholar
  93. 93.
    Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging (Albany NY). 2015;7(9):690–700.CrossRefGoogle Scholar
  94. 94.
    Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell. 2015;15(1):149–54.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al. Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun. 2014;5:5366.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Lisa M. McEwen
    • 1
  • Sarah J. Goodman
    • 1
  • Michael S. Kobor
    • 1
  • Meaghan J. Jones
    • 1
  1. 1.Center for Molecular Medicine and TherapeuticsThe University of British Columbia, BC Children’s HospitalVancouverCanada

Personalised recommendations