Depicting Gene Co-expression Networks Underlying eQTLs

  • Nathalie Villa-Vialaneix
  • Laurence Liaubet
  • Magali SanCristobal
Chapter

Abstract

Deciphering the biological mechanisms underlying a list of genes whose expression is under partial genetic control (i.e., having at least one eQTL) may not be as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., health or production phenotype) is linked to the list of transcripts under study. There is a need to find a coherent biological interpretation of a list of genes under (partial) genetic control. We propose a pipeline using appropriate statistical tools to build a co-expression network from the list of genes, then to finely depict the network structure. Graphical models are relevant because they are based on partial correlations, closely linked with causal dependencies. Highly connected genes (hubs) and genes that are important for the global structure of the network (genes with high betweenness) are often biologically meaningful. Extracting modules of genes that are highly connected permits a significant enrichment in one biological function for each module, thus linking statistical results with biological significance. This approach has been previously used on a pig eQTL dataset (Villa-Vialaneix et al. 2013) and was proven to be highly relevant. Throughout the present chapter, we define statistical notions linked with network theory, and apply them on a reduced dataset of genes with eQTL that were found in the pig species to illustrate the basics of network inference and mining.

References

  1. Auber D (2003) Tulip: a huge graph visualisation framework. In: Mutzel P, Jünger M (eds) Graph Drawing Softwares, Mathematics and Visualization. Berlin, Heidelberg: Springer, pp 105–126Google Scholar
  2. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedGoogle Scholar
  3. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: E.e.a. Adar (ed) Proceedings of the Third International AAAI Conference on Weblogs and Social Media, pp 361–362. Menlo Park: AAAI Press. URL http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B 57:289–300Google Scholar
  5. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C, Causton H, Gaasterland T, Glenisson P, Holstege F, Kim I, Markowitz V, Matese J, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (miame)-toward standards for microarray data. Nat Genet 29(4):365–371CrossRefPubMedGoogle Scholar
  6. Butte A, Kohane I (1999) Unsupervised knowledge discovery in medical databases using relevance networks. In: Proceedings of the AMIA Symposium, pp 711–715Google Scholar
  7. Butte A, Kohane I (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Proceedings of the Pacific Symposium on Biocomputing, pp 418–429Google Scholar
  8. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Systems. URL http://igraph.sf.net
  9. Dorogovtsev S, Mendes J (2003) Evolution of Networks. From biological Nets to the Internet and WWW. Oxford University PressGoogle Scholar
  10. Dozmorov M, Giles C, Wren J (2011) Predicting gene ontology from a global meta-analysis of 1-color microarray experiments. BMC Bioinform 12(Supp 10):S14CrossRefGoogle Scholar
  11. Edwards D (1995) Introduction to graphical modelling. Springer, New YorkCrossRefGoogle Scholar
  12. Fisher R (1922) On the interpretation of x 2 from contingency tables, and the calculation of P. J Royal Stat Soc 85(1):87–94. doi:10.2307/2340521.JSTOR2340521 CrossRefGoogle Scholar
  13. Fortunato S, Barthélémy M (2007) Resolution limit in community detection. In: Proceedings of the National Academy of Sciences, vol. 104, pp 36–41. doi:10.1073/pnas.0605965104; URL: http://www.pnas.org/content/104/1/36.abstract
  14. Foygel R, Drton M (2010) Extended Bayesian information criteria for Gaussian graphical models. In: Proceedings of Neural Information Processing Systems (NIPS 2010), pp 604–612. VancouverGoogle Scholar
  15. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441CrossRefPubMedGoogle Scholar
  16. Fruchterman T, Reingold B (1991) Graph drawing by force-directed placement. Software Pract Exp 21:1129–1164CrossRefGoogle Scholar
  17. Gillis J, Pavlidis P (2012) “guilt by association” is the exception rather than the rule in gene networks. PlLoS Computational Biology 8(3):e1002,444Google Scholar
  18. da Huang W, Sherman B, Lempicki R (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13CrossRefGoogle Scholar
  19. Kogelman L, Zhernakova D, Westra H, Cirera S, Fredholm M, Franke L, Kadamideen H (2015) An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genom Med 7:105. doi:10.1186/s13073-015-0229-0 CrossRefGoogle Scholar
  20. Liaubet L, Lobjois V, Faraut T, Tircazes A, Benne F, Iannuccelli N, Pires J, Glénisson J, Robic A, Le Roy P, SanCristobal M, Cherel P (2011) Genetic variability or transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism. BMC Genom 12(548):548CrossRefGoogle Scholar
  21. Liu H, Roeber K, Wasserman L (2010) Stability approach to regularization selection (StARS) for high dimensional graphical models. In: Proceedings of Neural Information Processing Systems (NIPS 2010), vol. 23, pp 1432–1440. Vancouver. URL http://machinelearning.wustl.edu/mlpapers/papers/NIPS2010_0834
  22. Lysen S (2009) Permuted inclusion criterion: a variable selection technique. Ph.D. thesis, University of PennsylvaniaGoogle Scholar
  23. Meinshausen N, Bühlmann P (2006) High dimensional graphs and variable selection with the lasso. Ann Stat 34(3):1436–1462CrossRefGoogle Scholar
  24. Montastier E, Villa-Vialaneix N, Caspar-Bauguil S, Hlavaty P, Tvrzicka E, Gonzalez I, Saris W, Langin D, Kunesova M, Viguerie N (2015) System model network for adipose tissue signatures related to weight changes in response to calorie restriction and subsequent weight maintenance. PLoS Comput Biol 11(1):e1004,047. doi:10.1371/journal.pcbi.1004047. First co-author
  25. Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026,113. doi:10.1103/PhysRevE.69.026113.URL, http://www.citebase.org/abstract?id=oai%3AarXiv.org%3Acond-mat%2F0308217 Google Scholar
  26. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74(016110)Google Scholar
  27. Rossi F, Villa-Vialaneix N (2011) Représentation d’un grand réseau à partir d’une classification hiérarchique de ses sommets. Journal de la Société Française de Statistique 152(3):34–65. URL http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/82/73
  28. Schaeffer S (2007) Graph clustering. Comp Sci Rev 1(1):27–64CrossRefGoogle Scholar
  29. Schäfer J, Strimmer K (2005a) An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764. doi:10.1093/bioinformatics/bti062 CrossRefPubMedGoogle Scholar
  30. Schäfer J, Strimmer K (2005b) A shrinkage approach to large-scale covariance matrix estimation and implication for functional genomics. Stat Appl Genet Mol Biol 4:1–32Google Scholar
  31. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  32. Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, San Cristobal M (2013) The structure of a gene co-expression network reveals biological functions underlying eQTLs. PLoS One 8(4), e60,045. doi:10.1371/journal.pone.0060045 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nathalie Villa-Vialaneix
    • 1
  • Laurence Liaubet
    • 2
  • Magali SanCristobal
    • 2
  1. 1.MIAT, Université de Toulouse, INRACastanet TolosanFrance
  2. 2.GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVTCastanet TolosanFrance

Personalised recommendations