Steroid Hormone Receptors in the Corpus Luteum

  • Robert Rekawiecki
  • Magdalena K. Kowalik
  • Jan Kotwica
Chapter

Abstract

The function of the corpus luteum (CL) is to produce progesterone (P4), which is the main regulator of estrous cycle duration and creates suitable conditions for embryo implantation and development. The CL also synthesizes moderate amounts of estradiol (E2). The action of these steroid hormones on target cells are evoked by specific nuclear receptors that belong to the family of receptor-dependent transcription factors. The physiological effect of P4 upon target cells is mediated through interaction of this hormone with nuclear progesterone receptor (PGR) isoforms A (PGRA) and B (PGRB) and that of E2 through the alpha (ERα) and beta (ERβ) receptors. Steroids may also affect cells through a nongenomic mechanism, which involves the membrane steroid-binding proteins such as the progesterone receptor membrane component (PGRMC) 1 and 2 and the membrane progestin receptors (mPR) alpha (mPRα), beta (mPRβ), and gamma (mPRγ), and the G protein-coupled estrogen receptor (GPR30). These proteins rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of nuclear and membrane steroid hormone receptors enhances their regulatory influence on the CL function.

Keywords

Corpus luteum Progesterone receptor Estradiol receptor Steroid receptor isoforms 

References

  1. 1.
    Misrahi M, Venencie PY, Saugier-Veber P, Sar S, Dessen P, Milgrom E. Structure of the human progesterone receptor gene. Biochim Biophys Acta. 1993;1216(2):289–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Conneely OM, Kettelberger DM, Tsai MJ, Schrader WT, O’Malley BW. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem. 1989;264(24):14062–4.PubMedGoogle Scholar
  3. 3.
    Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction. 2004;128(2):139–46.CrossRefPubMedGoogle Scholar
  4. 4.
    Giangrande PH, Pollio G, McDonnell DP. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem. 1997;272(52):32889–900.CrossRefPubMedGoogle Scholar
  5. 5.
    Pieber D, Allport VC, Bennett PR. Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion. Eur J Pharmacol. 2001;427(1):7–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Taylor AH, McParland PC, Taylor DJ, Bell SC. The cytoplasmic 60 kDa progesterone receptor isoform predominates in the human amniochorion and placenta at term. Reprod Biol Endocrinol. 2009;7:22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wei LL, Hawkins P, Baker C, Norris B, Sheridan PL, Quinn PG. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocrinol. 1996;10(11):1379–87.PubMedGoogle Scholar
  8. 8.
    Berisha B, Pfaffl MW, Schams D. Expression of estrogen and progesterone receptors in the bovine ovary during estrous cycle and pregnancy. Endocrine. 2002;17(3):207–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Shibaya M, Matsuda A, Hojo T, Acosta TJ, Okuda K. Expressions of estrogen receptors in the bovine corpus luteum: cyclic changes and effects of prostaglandin F2alpha and cytokines. J Reprod Dev. 2007;53(5):1059–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med. 2006;27(4):299–402.CrossRefPubMedGoogle Scholar
  11. 11.
    Cheung J, Smith DF. Molecular chaperone interactions with steroid receptors: an update. Mol Endocrinol. 2000;14(7):939–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Smith DF. Chaperones in progesterone receptor complexes. Semin Cell Dev Biol. 2000;11(1):45–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Griekspoor A, Zwart W, Neefjes J, Michalides R. Visualizing the action of steroid hormone receptors in living cells. Nucl Recept Signal. 2007;5, e003.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000;14(2):121–41.PubMedGoogle Scholar
  15. 15.
    Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM. Role of CBP/P300 in nuclear receptor signalling. Nature. 1996;383(6595):99–103.CrossRefPubMedGoogle Scholar
  16. 16.
    Soutoglou E, Viollet B, Vaxillaire M, Yaniv M, Pontoglio M, Talianidis I. Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J. 2001;20(8):1984–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rowan BG, O’Malley BW. Progesterone receptor coactivators. Steroids. 2000;65(10-11):545–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Heery DM, Kalkhoven E, Hoare S, Parker MG. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 1997;387(6634):733–6.CrossRefPubMedGoogle Scholar
  19. 19.
    McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44.PubMedGoogle Scholar
  20. 20.
    Tyler JK, Kadonaga JT. The “dark side” of chromatin remodeling: repressive effects on transcription. Cell. 1999;99(5):443–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Hu X, Lazar MA. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature. 1999;402(6757):93–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Lazar MA. Nuclear receptor corepressors. Nucl Recept Signal. 2003;1, e001.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng Q, O’Malley BW. Nuclear receptor modulation--role of coregulators in selective estrogen receptor modulator (SERM) actions. Steroids. 2014;90:39–43.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cadepond F, Ulmann A, Baulieu EE. RU486 (mifepristone): mechanisms of action and clinical uses. Annu Rev Med. 1997;48:129–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Vegeto E, Allan GF, Schrader WT, Tsai MJ, McDonnell DP, O’Malley BW. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell. 1992;69(4):703–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Benhamou B, Garcia T, Lerouge T, Vergezac A, Gofflo D, Bigogne C, Chambon P, Gronemeyer H. A single amino acid that determines the sensitivity of progesterone receptors to RU486. Science. 1992;255(5041):206–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Leonhardt SA, Edwards DP. Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood). 2002;227(11):969–80.Google Scholar
  28. 28.
    Oñate SA, Tsai SY, Tsai MJ, O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995;270(5240):1354–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Tetel MJ, Giangrande PH, Leonhardt SA, McDonnell DP, Edwards DP. Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo. Mol Endocrinol. 1999;13(6):910–24.CrossRefPubMedGoogle Scholar
  30. 30.
    Rothchild I. The corpus luteum revisited: are the paradoxical effects of RU486 a clue to how progesterone stimulates its own secretion? Biol Reprod. 1996;55(1):1–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Meyer ME, Pornon A, Ji JW, Bocquel MT, Chambon P, Gronemeyer H. Agonistic and antagonistic activities of RU486 on the functions of the human progesterone receptor. EMBO J. 1990;9(12):3923–32.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Conneely OM, Lydon JP. Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids. 2000;65(10-11):571–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Rekawiecki R, Kowalik MK, Kotwica J. Onapristone (ZK299) and mifepristone (RU486) regulate the messenger RNA and protein expression levels of the progesterone receptor isoforms A and B in the bovine endometrium. Theriogenology. 2015;84(3):348–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Ottander U, Hosokawa K, Liu K, Bergh A, Ny T, Olofsson JI. A putative stimulatory role of progesterone acting via progesterone receptors in the steroidogenic cells of the human corpus luteum. Biol Reprod. 2000;62(3):655–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Rekawiecki R, Kowalik MK, Kotwica J. Cloning and expression of progesterone receptor isoforms A and B in bovine corpus luteum. Reprod Fertil Dev. 2014;67:215–25Google Scholar
  36. 36.
    Misao R, Nakanishi Y, Iwagaki S, Fujimoto J, Tamaya T. Expression of progesterone receptor isoforms in corpora lutea of human subjects: correlation with serum oestrogen and progesterone concentrations. Mol Hum Reprod. 1998;4(11):1045–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Sakumoto R, Vermehren M, Kenngott RA-M, Okuda K, Sinowatz F. Changes in the levels of progesterone receptor mRNA and protein in the bovine corpus luteum during the estrous cycle. J Reprod Dev. 2010;56(2):219–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Cassar CA, Dow MPD, Pursley JR, Smith GW. Effect of the preovulatory LH surge on bovine follicular progesterone receptor mRNA expression. Domest Anim Endocrinol. 2002;22(3):179–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Okuda K, Miyamoto A, Sauerwein H, Schweigert FJ, Schams D. Evidence for oxytocin receptors in cultured bovine luteal cells. Biol Reprod. 1992;46(6):1001–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Kotwica J, Rekawiecki R, Duras MA. Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. Bull Vet Inst Pulawy. 2004;48(2):139–46.Google Scholar
  41. 41.
    Rekawiecki R, Nowik M, Kotwica J. Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat. 2005;78(1-4):169–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Rekawiecki R, Kotwica J. Molecular regulation of progesterone synthesis in the bovine corpus luteum. Vet Med (Praha). 2007;52(9):405–12.Google Scholar
  43. 43.
    Rekawiecki R, Kotwica J. Involvement of progesterone, oxytocin, and noradrenaline in the molecular regulation of steroidogenesis in the corpus luteum of the cow. Bull Vet Inst Pulawy. 2008;52:573–80.Google Scholar
  44. 44.
    Rekawiecki R, Kowalik MK, Kotwica J. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium. Reprod Fertil Dev. 2014;67:215–25Google Scholar
  45. 45.
    Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80(1):1–29.PubMedGoogle Scholar
  46. 46.
    Laven RA, Peters AR. Bovine retained placenta: aetiology, pathogenesis and economic loss. Vet Rec. 1996;139(19):465–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Krzymowski T, Stefańczyk-Krzymowska S. The oestrous cycle and early pregnancy--a new concept of local endocrine regulation. Vet J. 2004;168(3):285–96.CrossRefPubMedGoogle Scholar
  48. 48.
    Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol. 2005;19(11):2713–35.CrossRefPubMedGoogle Scholar
  49. 49.
    Auletta FJ, Kelm LB, Schofield MJ. Responsiveness of the corpus luteum of the rhesus monkey (Macaca mulatta) to gonadotrophin in vitro during spontaneous and prostaglandin F2 alpha-induced luteolysis. J Reprod Fertil. 1995;103(1):107–13.CrossRefPubMedGoogle Scholar
  50. 50.
    Duffy DM, Wells TR, Haluska GJ, Stouffer RL. The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle. Biol Reprod. 1997;57(4):693–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392(6675):509–12.CrossRefPubMedGoogle Scholar
  52. 52.
    Peluso JJ. Multiplicity of progesterone actions and receptors in the mammalian ovary. Biol Reprod. 2006;75(1):2–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Lösel RM, Besong D, Peluso JJ, Wehling M. Progesterone receptor membrane component 1--many tasks for a versatile protein. Steroids. 2008;73(9-10):929–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Falkenstein E, Meyer C, Eisen C, Scriba PC, Wehling M. Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun. 1996;229(1):86–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Kelly MJ, Levin ER. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab. 2001;12(4):152–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Cahill MA. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol. 2007;105(1-5):16–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update. 2009;15(1):119–38.CrossRefPubMedGoogle Scholar
  58. 58.
    Dressing GE, Goldberg JE, Charles NJ, Schwertfeger KL, Lange CA. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids. 2011;76(1-2):11–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Bogacki M, Silvia WJ, Rekawiecki R, Kotwica J. Direct inhibitory effect of progesterone on oxytocin-induced secretion of prostaglandin F(2alpha) from bovine endometrial tissue. Biol Reprod. 2002;67(1):184–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Duras M, Mlynarczuk J, Kotwica J. Non-genomic effect of steroids on oxytocin-stimulated intracellular mobilization of calcium and on prostaglandin F2alpha and E2 secretion from bovine endometrial cells. Prostaglandins Other Lipid Mediat. 2005;76(1-4):105–16.CrossRefPubMedGoogle Scholar
  61. 61.
    Kowalik MK, Slonina D, Kotwica J. Genomic and non-genomic effects of progesterone and pregnenolone on the function of bovine endometrial cells. Vet Med. 2009;54(5):205–14.Google Scholar
  62. 62.
    Slonina D, Kowalik MK, Subocz M, Kotwica J. The effect of ovarian steroids on oxytocin-stimulated secretion and synthesis of prostaglandins in bovine myometrial cells. Prostaglandins Other Lipid Mediat. 2009;90(3-4):69–75.CrossRefPubMedGoogle Scholar
  63. 63.
    Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol. 2007;21(2):359–75.CrossRefPubMedGoogle Scholar
  64. 64.
    Gimpl G, Fahrenholz F. Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta. 2002;1564(2):384–92.CrossRefPubMedGoogle Scholar
  65. 65.
    Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–30.CrossRefPubMedGoogle Scholar
  66. 66.
    Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Raza FS, Takemori H, Tojo H, Okamoto M, Vinson GP. Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem. 2001;268(7):2141–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Peluso JJ, Liu X, Gawkowska A, Johnston-MacAnanny E. Progesterone activates a progesterone receptor membrane component 1-dependent mechanism that promotes human granulosa/luteal cell survival but not progesterone secretion. J Clin Endocrinol Metab. 2009;94(7):2644–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behaviors. Proc Natl Acad Sci USA. 2000;97(23):12816–21.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang L, Kanda Y, Roberts DJ, Ecker JL, Losel R, Wehling M, Peluso JJ, Pru JK. Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol. 2008;287(1-2):81–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Sasson R, Rimon E, Dantes A, Cohen T, Shinder V, Land-Bracha A, Amsterdam A. Gonadotrophin-induced gene regulation in human granulosa cells obtained from IVF patients. Modulation of steroidogenic genes, cytoskeletal genes and genes coding for apoptotic signalling and protein kinases. Mol Hum Reprod. 2004;10(5):299–311.CrossRefPubMedGoogle Scholar
  72. 72.
    McRae RS, Johnston HM, Mihm M, O’Shaughnessy PJ. Changes in mouse granulosa cell gene expression during early luteinization. Endocrinology. 2005;146(1):309–17.CrossRefPubMedGoogle Scholar
  73. 73.
    Cai Z, Stocco C. Expression and regulation of progestin membrane receptors in the rat corpus luteum. Endocrinology. 2005;146(12):5522–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Luciano AM, Corbani D, Lodde V, Tessaro I, Franciosi F, Peluso JJ, Modina S. Expression of progesterone receptor membrane component-1 in bovine reproductive system during estrous cycle. Eur J Histochem. 2011;55(3), e27.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kowalik MK, Rekawiecki R, Kotwica J. Expression and localization of progesterone receptor membrane component 1 and 2 and serpine mRNA binding protein 1 in the bovine corpus luteum during the estrous cycle and the first trimester of pregnancy. Theriogenology. 2014;82(8):1086–93.CrossRefPubMedGoogle Scholar
  76. 76.
    Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009;121(1):14–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Hughes AL, Powell DW, Bard M, Eckstein J, Barbuch R, Link AJ, Espenshade PJ. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab. 2007;5(2):143–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436–52.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Luciano AM, Lodde V, Franciosi F, Ceciliani F, Peluso JJ. Progesterone receptor membrane component 1 expression and putative function in bovine oocyte maturation, fertilization, and early embryonic development. Reproduction. 2010;140(5):663–72.CrossRefPubMedGoogle Scholar
  80. 80.
    Peluso JJ, Romak J, Liu X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology. 2008;149(2):534–43.CrossRefPubMedGoogle Scholar
  81. 81.
    Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320(1-2):153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Engmann L, Losel R, Wehling M, Peluso JJ. Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab. 2006;91(12):4962–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Wendler A, Wehling M. PGRMC2, a yet uncharacterized protein with potential as tumor suppressor, migration inhibitor, and regulator of cytochrome P450 enzyme activity. Steroids. 2013;78(6):555–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Keator CS, Mah K, Slayden OD. Alterations in progesterone receptor membrane component 2 (PGRMC2) in the endometrium of macaques afflicted with advanced endometriosis. Mol Hum Reprod. 2012;18(6):308–19.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Slonina D, Kowalik MK, Kotwica J. Expression of progesterone receptor membrane component 1, serpine mRNA binding protein 1 and nuclear progesterone receptor isoforms A and B in the bovine myometrium during the estrous cycle and early pregnancy. J Reprod Dev. 2012;58(3):288–94.CrossRefPubMedGoogle Scholar
  86. 86.
    Kowalik MK, Slonina D, Rekawiecki R, Kotwica J. Expression of progesterone receptor membrane component (PGRMC) 1 and 2, serpine mRNA binding protein 1 (SERBP1) and nuclear progesterone receptor (PGR) in the bovine endometrium during the estrous cycle and the first trimester of pregnancy. Reprod Biol. 2013;13(1):15–23.CrossRefPubMedGoogle Scholar
  87. 87.
    Saint-Dizier M, Sandra O, Ployart S, Chebrout M, Constant F. Expression of nuclear progesterone receptor and progesterone receptor membrane components 1 and 2 in the oviduct of cyclic and pregnant cows during the post-ovulation period. Reprod Biol Endocrinol. 2012;10:76.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Shankar R, Johnson MP, Williamson NA, Cullinane F, Purcell AW, Moses EK, Brennecke SP. Molecular markers of preterm labor in the choriodecidua. Reprod Sci. 2010;17(3):297–310.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhu Y, Bond J, Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA. 2003;100(5):2237–42.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Fernandes MS, Pierron V, Michalovich D, Astle S, Thornton S, Peltoketo H, et al. Regulated expression of putative membrane progestin receptor homologues in human endometrium and gestational tissues. J Endocrinol. 2005;187(1):89–101.CrossRefPubMedGoogle Scholar
  91. 91.
    Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: potential role in functional progesterone withdrawal at term. Mol Endocrinol. 2006;20(7):1519–34.CrossRefPubMedGoogle Scholar
  92. 92.
    Qiu HB, Lu SS, Ji KL, Song XM, Lu YQ, Zhang M, Lu KH. Membrane progestin receptor beta (mPR-beta): a protein related to cumulus expansion that is involved in in vitro maturation of pig cumulus-oocyte complexes. Steroids. 2008;73(14):1416–23.CrossRefPubMedGoogle Scholar
  93. 93.
    Nutu M, Weijdegård B, Thomas P, Thurin-Kjellberg A, Billig H, Larsson DJ. Distribution and hormonal regulation of membrane progesterone receptors β and γ in ciliated epithelial cells of mouse and human fallopian tubes. Reprod Biol Endocrinol. 2009;7(1):89.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ashley RL, Clay CM, Farmerie TA, Niswender GD, Nett TM. Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization. Endocrinology. 2006;147(9):4151–9.CrossRefPubMedGoogle Scholar
  95. 95.
    Ashley RL, Arreguin-Arevalo JA, Nett TM. Binding characteristics of the ovine membrane progesterone receptor alpha and expression of the receptor during the estrous cycle. Reprod Biol Endocrinol. 2009;7:42.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Duras M, Brzósko E, Kotwica J. Influence of progesterone, pregnenolone and 17-beta-hydroxyprogesterone on the function of bovine luteal cells treated with luteinizing hormone, noradrenaline and prostaglandin E2. Pol J Vet Sci. 2005;8(2):113–9.PubMedGoogle Scholar
  97. 97.
    Mlynarczuk J, Sasiadek J, Kotwica J. Non-genomic action of progesterone in cultured bovine luteal and endometrial epithelial cells. Bull Vet Inst Pulawy. 2005;49(2):193–8.Google Scholar
  98. 98.
    Kowalik MK, Kotwica J. Progesterone receptor membrane component 1 (PGRMC1) gene expression in corpus luteum during the estrous cycle in cows. Reprod Biol. 2008;8(3):291–7.CrossRefPubMedGoogle Scholar
  99. 99.
    Min L, Takemori H, Nonaka Y, Katoh Y, Doi J, Horike N, Osamu H, Raza FS, Vinson GP, Okamoto M. Characterization of the adrenal-specific antigen IZA (inner zone antigen) and its role in the steroidogenesis. Mol Cell Endocrinol. 2004;215(1-2):143–8.CrossRefPubMedGoogle Scholar
  100. 100.
    Albrecht C, Huck V, Wehling M, Wendler A. In vitro inhibition of SKOV-3 cell migration as a distinctive feature of progesterone receptor membrane component type 2 versus type 1. Steroids. 2012;77(14):1543–50.CrossRefPubMedGoogle Scholar
  101. 101.
    Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods. 2005;2(4):261–7.CrossRefPubMedGoogle Scholar
  102. 102.
    Wu W, Shi S-Q, Huang H-J, Balducci J, Garfield RE. Changes in PGRMC1, a potential progesterone receptor, in human myometrium during pregnancy and labour at term and preterm. Mol Hum Reprod. 2011;17(4):233–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Robert Rekawiecki
    • 1
  • Magdalena K. Kowalik
    • 1
  • Jan Kotwica
    • 1
  1. 1.Department of Physiology and Toxicology of ReproductionInstitute of Animal Reproduction and Food Research, The Polish Academy of SciencesOlsztynPoland

Personalised recommendations