From Types to Sets by Local Type Definitions in Higher-Order Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9807)

Abstract

Types in Higher-Order Logic (HOL) are naturally interpreted as nonempty sets—this intuition is reflected in the type definition rule for the HOL-based systems (including Isabelle/HOL), where a new type can be defined whenever a nonempty set is exhibited. However, in HOL this definition mechanism cannot be applied inside proof contexts. We propose a more expressive type definition rule that addresses the limitation and we prove its soundness. This higher expressive power opens the opportunity for a HOL tool that relativizes type-based statements to more flexible set-based variants in a principled way. We also address particularities of Isabelle/HOL and show how to perform the relativization in the presence of type classes.

References

  1. 1.
    From Types to Sets - Associated Web Page. http://www21.in.tum.de/~kuncar/documents/types-to-sets/
  2. 2.
    The HOL4 Theorem Prover. http://hol.sourceforge.net/
  3. 3.
    Adams, M.: Introducing HOL Zero. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Aransay, J., Ballarin, C., Rubio, J.: A mechanized proof of the basic perturbation lemma. J. Autom. Reason. 40(4), 271–292 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita interactive theorem prover. In: Bjorner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 64–69. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda – a functional language with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Chan, H., Norrish, M.: Mechanisation of AKS algorithm: part 1 - the main theorem. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 117–136. Springer, New York (2015)Google Scholar
  9. 9.
    Coble, A.R.: Formalized information-theoretic proofs of privacy using the HOL4 theorem-prover. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 77–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall Inc, Upper Saddle River (1986)Google Scholar
  11. 11.
    Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  12. 12.
    Grabowski, A., Kornilowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reason. 3(2), 153–245 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Harrison, J.: HOL Light: a tutorial introduction. In: Srivas, K., Camilleri, M.A.J. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 135–151. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Homeier, P.V.: The HOL-Omega logic. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 244–259. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Huffman, B., Kunčar, O.: Lifting and Transfer: a modular design for quotients in Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Immler, F.: Generic Construction of Probability Spaces for Paths of Stochastic Processes. Master’s thesis, Institut für Informatik, Technische Universität München (2012)Google Scholar
  19. 19.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)Google Scholar
  20. 20.
    Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 323–338. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s Consistency, Draft. http://andreipopescu.uk/HOLC.html
  22. 22.
    Kunčar, O.: Types, Abstraction and Parametric Polymorphism in Higher-Order Logic. Ph.D. thesis, Fakultät für Informatik, Technische Universität München (2016). http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
  23. 23.
    Maggesi, M.: A formalisation of metric spaces in HOL Light. In: Presented at the workshop formal mathematics for mathematicians, CICM 2015 (2015). http://www.cicm-conference.org/2015/fm4m/FMM_2015_paper_3.pdf
  24. 24.
    Mitchell, J.C.: Representation independence and data abstraction. In: POPL 1986, pp. 263–276. ACM (1986)Google Scholar
  25. 25.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL–A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  26. 26.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-Order Logic. Part of the Isabelle 2015 distribution (2015). https://isabelle.in.tum.de/dist/Isabelle2015/doc/tutorial.pdf
  27. 27.
    Pitts, A.: The HOL Logic. In: Gordon and Melham [11], pp. 191–232 (1993)Google Scholar
  28. 28.
    Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP Congress, pp. 513–523 (1983)Google Scholar
  29. 29.
    Shankar, N., Owre, S., Rushby, J.M.: PVS Tutorial. Computer Science Laboratory, SRI International (1993)Google Scholar
  30. 30.
    Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for higher-order logic: category theory applied to theorem proving. In: LICS 2012, pp. 596–605. IEEE (2012)Google Scholar
  31. 31.
    Wadler, P.: Theorems for Free! In: FPCA 1989, pp. 347–359. ACM (1989)Google Scholar
  32. 32.
    Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fakultät für InformatikTechnische Universität MünchenMunichGermany
  2. 2.Department of Computer Science, School of Science and TechnologyMiddlesex UniversityLondonUK
  3. 3.Institute of Mathematics Simion Stoilow of the Romanian AcademyBucharestRomania

Personalised recommendations