Transcutaneous O2 and CO2 Monitoring

  • Diego Orbegozo-Cortès
  • Daniel De BackerEmail author


Transcutaneous PO2 and PCO2 measurements are often used to estimate their arterial counterparts. However, tissue perfusion is a critical determinant of the difference between transcutaneous and arterial PO2 or PCO2. Measuring transcutaneous PO2 at 37 °C poorly represents tissue oxygenation, as the measured variable reflects a mixture of arterial, venous, and capillary PO2, and the proportion of these varies in different shock states. Dynamic tests, such as transient occlusion test or inhalation of a hyperoxic mixture, are much more representative of tissue perfusion. On the other hand, transcutaneous PCO2 at 37 °C and the gradient between transcutaneous and arterial PCO2 reflect tissue perfusion and in particular microvascular perfusion. Whether these could be used in routine clinical monitoring of our critically ill patients remains to be determined.


Tissue oxygenation Circulatory failure Shock Sepsis Microcirculation Diagnostic techniques and procedures 


  1. 1.
    Severinghaus JW. Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology. 1960;21:717–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Eberhard P, Mindt W, Schafer R. Cutaneous blood gas monitoring in the adult. Crit Care Med. 1981;9(10):702–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Severinghaus JW, Stafford M, Bradley AF. tcPCO2 electrode design, calibration and temperature gradient problems. Acta Anaesthesiol Scand Suppl. 1978;68:118–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol (1985). 1994;76:2443–51.CrossRefGoogle Scholar
  5. 5.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.CrossRefPubMedGoogle Scholar
  6. 6.
    De Backer D, Donadello K, Sakr Y, Ospina-Tascon GA, Salgado DR, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37°C to evaluate micro perfusion in septic patients. Chest. 2010;138(5):1062–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42(2):211–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Wimberley PD, Gronlund PK, Olsson J, Siggaard-Andersen O. Transcutaneous carbon dioxide and oxygen tension measured at different temperatures in healthy adults. Clin Chem. 1985;31(10):1611–5.PubMedGoogle Scholar
  10. 10.
    Jaszczak P. Skin oxygen tension, skin oxygen consumption, and skin blood flow measured by a tc-pO2 electrode. Acta Physiol Scand Suppl. 1991;603:53–7.PubMedGoogle Scholar
  11. 11.
    Tremper KK, Mentelos RA, Shoemaker WC. Effect of hypercarbia and shock on transcutaneous carbon dioxide at different electrode temperatures. Crit Care Med. 1980;8(11):608–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Nishiyama T, Nakamura S, Yamashita K. Effects of the electrode temperature of a new monitor, TCM4, on the measurement of transcutaneous oxygen and carbon dioxide tension. J Anesth. 2006;20(4):331–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Rodriguez P, Lellouche F, Aboab J, Buisson CB, Brochard L. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med. 2006;32(2):309–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Rithalia SV, Farrow P, Doran BR. Comparison of transcutaneous oxygen and carbon dioxide monitors in normal adults and critically ill patients. Intensive Crit Care Nurs. 1992;8(1):40–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Patel BT, Delpy DT, Hillson PJ, Parker D. A topical metabolic inhibitor to improve transcutaneous estimation of arterial oxygen tension in adults. J Biomed Eng. 1989;11(5):381–3.CrossRefPubMedGoogle Scholar
  16. 16.
    Fanconi S, Tschupp A, Molinari L. Long-term transcutaneous monitoring of oxygen tension and carbon dioxide at 42 degrees C in critically ill neonates: improved performance of the tcpo2 monitor with topical metabolic inhibition. Eur J Pediatr. 1996;155(12):1043–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Moritz AR, Henriques FC. Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol. 1947;23(5):695–720.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Golden SM. Skin craters—a complication of transcutaneous oxygen monitoring. Pediatrics. 1981;67(4):514–6.PubMedGoogle Scholar
  19. 19.
    Boyle RJ, Oh W. Erythema following transcutaneous PO2 monitoring. Pediatrics. 1980;65(2):333–4.PubMedGoogle Scholar
  20. 20.
    Jaszczak P, Sejrsen P. Oxygen tension and consumption measured by a tc-PO2 electrode on heated skin before and after epidermal stripping. Acta Anaesthesiol Scand. 1987;31(5):362–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Takiwaki H, Nakanishi H, Shono Y, Arase S. The influence of cutaneous factors on the transcutaneous pO2 and pCO2 at various body sites. Br J Dermatol. 1991;125(3):243–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Janssens JP, Perrin E, Bennani I, de Muralt B, Titelion V, Picaud C. Is continuous transcutaneous monitoring of PCO2 (TcPCO2) over 8 h reliable in adults? Respir Med. 2001;95(5):331–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Bendjelid K, Schutz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33(10):2203–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JY, Yoon YH, Lee SW, Choi SH, Cho YD, Park SM. Accuracy of transcutaneous carbon dioxide monitoring in hypotensive patients. Emerg Med J. 2014;31(4):323–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Bolliger D, Steiner LA, Kasper J, Aziz OA, Filipovic M, Seeberger MD. The accuracy of non-invasive carbon dioxide monitoring: a clinical evaluation of two transcutaneous systems. Anaesthesia. 2007;62(4):394–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Delerme S, Montout V, Goulet H, Arhan A, Le SF, Devilliers C, et al. Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED. Am J Emerg Med. 2012;30(9):1872–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Neuschwander A, Couffin S, Huynh TM, Cholley B, de Villechenon GP, Achouh P, et al. Determinants of transcutaneous ear lobe CO2 tension (PtCO2) at 37°C during on-pump cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29(4):917–23.CrossRefPubMedGoogle Scholar
  28. 28.
    Hasibeder W, Haisjackl M, Sparr H, Klaunzer S, Horman C, Salak N, et al. Factors influencing transcutaneous oxygen and carbon dioxide measurements in adult intensive care patients. Intensive Care Med. 1991;17(5):272–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Choi SH, Kim JY, Yoon YH, Park SJ, Moon SW, Cho YD. The use of transcutaneous CO2 monitoring in cardiac arrest patients: a feasibility study. Scand J Trauma Resusc Emerg Med. 2014;22:70.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Steinacker JM, Spittelmeister W, Wodick R. Examinations on the blood flow dependence of tcPO2 using the model of the “circulatory hyperbola”. Adv Exp Med Biol. 1987;220:263–8.PubMedGoogle Scholar
  31. 31.
    Nikki P, Tahvanainen J, Rasanen J, Makelainen A. Ventilatory pattern in respiratory failure arising from acute myocardial infarction. II. PtcO2 and PtcCO2 compared to Pao2 and PaCO2 during IMV4 vs IPPV12 and PEEP0 vs PEEP10. Crit Care Med. 1982;10(2):79–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Tremper KK, Shoemaker WC. Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock. Crit Care Med. 1981;9(10):706–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Tremper KK, Waxman K, Bowman R, Shoemaker WC. Continuous transcutaneous oxygen monitoring during respiratory failure, cardiac decompensation, cardiac arrest, and CPR. Transcutaneous oxygen monitoring during arrest and CPR. Crit Care Med. 1980;8(7):377–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Creutzig A, Dau D, Caspary L, Alexander K. Transcutaneous oxygen pressure measured at two different electrode core temperatures in healthy volunteers and patients with arterial occlusive disease. Int J Microcirc Clin Exp. 1987;5(4):373–80.PubMedGoogle Scholar
  35. 35.
    Gruber EM, Schwarz B, Germann R, Breuss M, Bonatti J, Hasibeder W. Reactive hyperemia in skin after cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2000;14(2):161–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Ewald U. Evaluation of the transcutaneous oxygen method used at 37°C for measurement of reactive hyperaemia in the skin. Clin Physiol. 1984;4(5):413–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Ewald U, Rooth G, Tuvemo T. Postischaemic hyperaemia studied with a transcutaneous oxygen electrode used at 33–37 degrees C. Scand J Clin Lab Invest. 1981;41(7):641–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Ewald U, Huch A, Huch R, Rooth G. Skin reactive hyperemia recorded by a combined TcPO2 and laser Doppler sensor. Adv Exp Med Biol. 1987;220:231–4.PubMedGoogle Scholar
  39. 39.
    Harward TR, Volny J, Golbranson F, Bernstein EF, Fronek A. Oxygen inhalation—induced transcutaneous PO2 changes as a predictor of amputation level. J Vasc Surg. 1985;2(1):220–7.PubMedGoogle Scholar
  40. 40.
    Yu M, Morita SY, Daniel SR, Chapital A, Waxman K, Severino R. Transcutaneous pressure of oxygen: a noninvasive and early detector of peripheral shock and outcome. Shock. 2006;26(5):450–6.CrossRefPubMedGoogle Scholar
  41. 41.
    He HW, Liu DW, Long Y, Wang XT, Chai WZ, Zhou X. The transcutaneous oxygen challenge test: a noninvasive method for detecting low cardiac output in septic patients. Shock. 2012;37(2):152–5.CrossRefPubMedGoogle Scholar
  42. 42.
    He HW, Liu DW, Long Y, Wang XT. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17(3):R116.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mari A, Vallee F, Bedel J, Riu B, Ruiz J, Sanchez-Verlaan P, et al. Oxygen challenge test in septic shock patients: prognostic value and influence of respiratory status. Shock. 2014;41(6):504–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Erasme University HospitalUniversité Libre de BruxellesBrusselsBelgium
  2. 2.CHIREC HospitalsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations