Advertisement

Optical Monitoring

  • Alexandre Augusto Pinto Lima
  • Daniel De Backer
Chapter

Abstract

Optical methods apply light with different wavelengths directly to tissue components and assess tissue microvascular oxygenation based on the specific absorption spectrum of oxygenated haemoglobin and deoxygenated haemoglobin. Commonly used optical methods for tissue monitoring in shock include near-infrared spectroscopy, peripheral perfusion index and laser Doppler flowmetry. NIRS-measured parameters provide quantitative information regarding blood flow and local oxygen consumption and are calculated directly or indirectly using arterial or venous occlusion. Laser Doppler flowmetry measures microvascular function based on endothelium-dependent vascular responses in the skin microcirculation during reactive hyperaemia. The peripheral perfusion index is derived from the photoelectric plethysmographic signal of pulse oximetry and has been used as a noninvasive measure of peripheral vascular tone variations.

Keywords

Physiological monitoring Circulatory failure Shock Sepsis Microcirculation Diagnostic techniques and procedures Near-infrared spectroscopy Oximetry Pulsatile flow Laser Doppler flowmetry Blood flow velocity 

References

  1. 1.
    Flewelling R. Noninvasive optical monitoring. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton: Springer; 2000. p. 1–10.Google Scholar
  2. 2.
    McClure W. 204 years of near infrared technology: 1800–2003. J Near Infrared Spectrosc. 2003;11:487.CrossRefGoogle Scholar
  3. 3.
    Ben-Gera I, Norris K. Direct spectrophotometric determination of fat and moisture in meat products. J Food Sci. 1968;33:64.CrossRefGoogle Scholar
  4. 4.
    Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11(4):213–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Boushel R, Piantadosi CA. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand. 2000;168(4):615–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol(1985). 1994;77(6):2740–7.CrossRefGoogle Scholar
  8. 8.
    Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Myers DE, Anderson LD, Seifert RP, Ortner JP, Cooper CE, Beilman GJ, et al. Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy. J Biomed Opt. 2005;10(3):034017.CrossRefPubMedGoogle Scholar
  10. 10.
    Yoshitani K, Kawaguchi M, Tatsumi K, Kitaguchi K, Furuya H. A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers. Anesth Analg. 2002;94(3):586–90.CrossRefPubMedGoogle Scholar
  11. 11.
    Casavola C, Paunescu LA, Fantini S, Gratton E. Blood flow and oxygen consumption with near-infrared spectroscopy and venous occlusion: spatial maps and the effect of time and pressure of inflation. J Biomed Opt. 2000;5(3):269–76.CrossRefPubMedGoogle Scholar
  12. 12.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.CrossRefPubMedGoogle Scholar
  13. 13.
    Hicks A, McGill S, Hughson RL. Tissue oxygenation by near-infrared spectroscopy and muscle blood flow during isometric contractions of the forearm. Can J Appl Physiol. 1999;24(3):216–30.CrossRefPubMedGoogle Scholar
  14. 14.
    MacDonald MJ, Tarnopolsky MA, Green HJ, Hughson RL. Comparison of femoral blood gases and muscle near-infrared spectroscopy at exercise onset in humans. J Appl Physiol. 1999;86(2):687–93.CrossRefPubMedGoogle Scholar
  15. 15.
    McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev. 2000;28(3):123–7.PubMedGoogle Scholar
  16. 16.
    Pareznik R, Knezevic R, Voga G, Podbregar M. Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med. 2006;32(1):87–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Mozina H, Podbregar M. Near-infrared spectroscopy during stagnant ischemia estimates central venous oxygen saturation and mixed venous oxygen saturation discrepancy in patients with severe left heart failure and additional sepsis/septic shock. Crit Care. 2010;14(2):R42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gomez H, Torres A, Polanco P, Kim HK, Zenker S, Puyana JC, et al. Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response. Intensive Care Med. 2008;34(9):1600–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG. Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Ward KR, Ivatury RR, Barbee RW, Terner J, Pittman R, Filho IP, et al. Near infrared spectroscopy for evaluation of the trauma patient: a technology review. Resuscitation. 2006;68(1):27–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Lima A, Bakker J. Noninvasive monitoring of peripheral perfusion. Intensive Care Med. 2005;31(10):1316–26.CrossRefPubMedGoogle Scholar
  22. 22.
    Beilman GJ, Myers D, Cerra FB, Lazaron V, Dahms RA, Conroy MJ, et al. Near-infrared and nuclear magnetic resonance spectroscopic assessment of tissue energetics in an isolated, perfused canine hind limb model of dysoxia. Shock. 2001;15(5):392–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Crookes BA, Cohn SM, Burton EA, Nelson J, Proctor KG. Noninvasive muscle oxygenation to guide fluid resuscitation after traumatic shock. Surgery. 2004;135(6):662–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Puyana JC, Soller BR, Zhang S, Heard SO. Continuous measurement of gut pH with near-infrared spectroscopy during hemorrhagic shock. J Trauma. 1999;46(1):9–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Rhee P, Langdale L, Mock C, Gentilello LM. Near-infrared spectroscopy: continuous measurement of cytochrome oxidation during hemorrhagic shock. Crit Care Med. 1997;25(1):166–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Cairns CB, Moore FA, Haenel JB, Gallea BL, Ortner JP, Rose SJ, et al. Evidence for early supply independent mitochondrial dysfunction in patients developing multiple organ failure after trauma. J Trauma. 1997;42(3):532–6.CrossRefPubMedGoogle Scholar
  27. 27.
    McKinley BA, Marvin RG, Cocanour CS, Moore FA. Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry. J Trauma. 2000;48(4):637–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Ikossi DG, Knudson MM, Morabito DJ, Cohen MJ, Wan JJ, Khaw L, et al. Continuous muscle tissue oxygenation in critically injured patients: a prospective observational study. J Trauma. 2006;61(4):780–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Crookes BA, Cohn SM, Bloch S, Amortegui J, Manning R, Li P, et al. Can near-infrared spectroscopy identify the severity of shock in trauma patients? J Trauma. 2005;58(4):806–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Cohn SM, Nathens AB, Moore FA, Rhee P, Puyana JC, Moore EE, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma. 2007;62(1):44–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Soller BR, Ryan KL, Rickards CA, Cooke WH, Yang Y, Soyemi OO, et al. Oxygen saturation determined from deep muscle, not thenar tissue, is an early indicator of central hypovolemia in humans. Crit Care Med. 2008;36(1):176–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Bartels SA, Bezemer R, de Vries FJ, Milstein DM, Lima A, Cherpanath TG, et al. Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure. Intensive Care Med. 2011;37:671.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lima A, van Bommel J, Jansen TC, Ince C, Bakker J. Low tissue oxygen saturation at the end of early goal-directed therapy is associated with worse outcome in critically ill patients. Crit Care. 2009;13(Suppl 5):S13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Girardis M, Rinaldi L, Busani S, Flore I, Mauro S, Pasetto A. Muscle perfusion and oxygen consumption by near-infrared spectroscopy in septic-shock and non-septic-shock patients. Intensive Care Med. 2003;29(7):1173–6.CrossRefPubMedGoogle Scholar
  35. 35.
    De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, et al. Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near-infrared spectroscopy in patients with septic shock. Intensive Care Med. 2005;31(12):1661–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27(4):348–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Doerschug KC, Delsing AS, Schmidt GA, Haynes WG. Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol. 2007;293(2):H1065–H71.CrossRefPubMedGoogle Scholar
  38. 38.
    Shapiro NI, Arnold R, Sherwin R, O’Connor J, Najarro G, Singh S, et al. The association of near-infrared spectroscopy-derived tissue oxygenation measurements with sepsis syndromes, organ dysfunction and mortality in emergency department patients with sepsis. Crit Care. 2011;15(5):R223.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Creteur J, Carollo T, Soldati G, Buchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33(9):1549–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Mayeur C, Campard S, Richard C, Teboul JL. Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy. Crit Care Med. 2011;39(4):695–701.CrossRefPubMedGoogle Scholar
  41. 41.
    Damoisel C, Payen D. Vascular occlusion tests: do we need another definition? Crit Care Med. 2011;39(11):2587–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Lima A, van Bommel J, Sikorska K, van Genderen M, Klijn E, Lesaffre E, et al. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med. 2011;39(7):1649–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Colin G, Nardi O, Polito A, Aboab J, Maxime V, Clair B, et al. Masseter tissue oxygen saturation predicts normal central venous oxygen saturation during early goal-directed therapy and predicts mortality in patients with severe sepsis. Crit Care Med. 2012;40(2):435–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Conrad M, Perez P, Thivilier C, Levy B. Early prediction of norepinephrine dependency and refractory septic shock with a multimodal approach of vascular failure. J Crit Care. 2015;30(4):739–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Damiani E, Adrario E, Luchetti MM, Scorcella C, Carsetti A, Mininno N, et al. Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One. 2015;10(5):e0122655.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Arbabi S, Brundage SI, Gentilello LM. Near-infrared spectroscopy: a potential method for continuous, transcutaneous monitoring for compartmental syndrome in critically injured patients. J Trauma. 1999;47(5):829–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Garr JL, Gentilello LM, Cole PA, Mock CN, Matsen FA III. Monitoring for compartmental syndrome using near-infrared spectroscopy: a noninvasive, continuous, transcutaneous monitoring technique. J Trauma. 1999;46(4):613–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Giannotti G, Cohn SM, Brown M, Varela JE, McKenney MG, Wiseberg JA. Utility of near-infrared spectroscopy in the diagnosis of lower extremity compartment syndrome. J Trauma. 2000;48(3):396–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27(7):1231–4.CrossRefPubMedGoogle Scholar
  50. 50.
    Consales G, De Gaudio AR. Sepsis associated encephalopathy. Minerva Anestesiol. 2005;71(1–2):39–52.PubMedGoogle Scholar
  51. 51.
    Okada E, Delpy DT. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl Opt. 2003;42(16):2915–22.CrossRefPubMedGoogle Scholar
  52. 52.
    Van Beekvelt MC, Borghuis MS, Van Engelen BG, Wevers RA, Colier WN. Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond). 2001;101(1):21–8.CrossRefGoogle Scholar
  53. 53.
    Wolf U, Wolf M, Choi JH, Paunescu LA, Safonova LP, Michalos A, et al. Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness. Adv Exp Med Biol. 2003;510:225–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Seiyama A, Hazeki O, Tamura M. Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J Biochem(Tokyo). 1988;103(3):419–24.Google Scholar
  55. 55.
    Poeze M. Tissue-oxygenation assessment using near-infrared spectroscopy during severe sepsis: confounding effects of tissue edema on StO(2) values. Intensive Care Med. 2006;32(5):788–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Galvin EM, Niehof S, Verbrugge SJ, Maissan I, Jahn A, Klein J, et al. Peripheral flow index is a reliable and early indicator of regional block success. Anesth Analg. 2006;103(1):239–43, table.CrossRefPubMedGoogle Scholar
  57. 57.
    Takeyama M, Matsunaga A, Kakihana Y, Masuda M, Kuniyoshi T, Kanmura Y. Impact of skin incision on the pleth variability index. J Clin Monit Comput. 2011;25(4):215–21.CrossRefPubMedGoogle Scholar
  58. 58.
    Mowafi HA, Ismail SA, Shafi MA, Al Ghamdi AA. The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofol-anesthetized adults. Anesth Analg. 2009;108(2):549–53.CrossRefPubMedGoogle Scholar
  59. 59.
    Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F. Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care. 2011;15(4):R168.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    van Genderen ME, Bartels SA, Lima A, Bezemer R, Ince C, Bakker J, et al. Peripheral perfusion index as an early predictor for central hypovolemia in awake healthy volunteers. Anesth Analg. 2013;116(2):351–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30(6):1210–3.CrossRefPubMedGoogle Scholar
  62. 62.
    Lima A, Jansen TC, van Bommel J, Ince C, Bakker J. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med. 2009;37(3):934–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Lima A, van Genderen ME, Klijn E, Bakker J, van Bommel J. Peripheral vasoconstriction influences thenar oxygen saturation as measured by near-infrared spectroscopy. Intensive Care Med. 2012;38(4):606–11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    He HW, Liu DW, Long Y, Wang XT. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17(3):R116.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schabauer AM, Rooke TW. Cutaneous laser Doppler flowmetry: applications and findings. Mayo Clin Proc. 1994;69(6):564–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Kiessling AH, Reyher C, Philipp M, Beiras-Fernandez A, Moritz A. Real-time measurement of rectal mucosal microcirculation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2015;29(1):89–94.CrossRefPubMedGoogle Scholar
  67. 67.
    Salgado MA, Salgado-Filho MF, Reis-Brito JO, Lessa MA, Tibirica E. Effectiveness of laser Doppler perfusion monitoring in the assessment of microvascular function in patients undergoing on-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2014;28(5):1211–6.CrossRefPubMedGoogle Scholar
  68. 68.
    Farkas K, Fabian E, Kolossvary E, Jarai Z, Farsang C. Noninvasive assessment of endothelial dysfunction in essential hypertension: comparison of the forearm microvascular reactivity with flow-mediated dilatation of the brachial artery. Int J Angiol. 2003;12:224–8.CrossRefGoogle Scholar
  69. 69.
    Koller A, Kaley G. Role of endothelium in reactive dilation of skeletal muscle arterioles. Am J Physiol. 1990;259(5 Pt 2):H1313–H6.PubMedGoogle Scholar
  70. 70.
    Morris SJ, Shore AC, Tooke JE. Responses of the skin microcirculation to acetylcholine and sodium nitroprusside in patients with NIDDM. Diabetologia. 1995;38(11):1337–44.CrossRefPubMedGoogle Scholar
  71. 71.
    Warren JB. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light. FASEB J. 1994;8(2):247–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Blaauw J, Graaff R, van Pampus MG, van Doormaal JJ, Smit AJ, Rakhorst G, et al. Abnormal endothelium-dependent microvascular reactivity in recently preeclamptic women. Obstet Gynecol. 2005;105(3):626–32.CrossRefPubMedGoogle Scholar
  73. 73.
    Hartl WH, Gunther B, Inthorn D, Heberer G. Reactive hyperemia in patients with septic conditions. Surgery. 1988;103(4):440–4.PubMedGoogle Scholar
  74. 74.
    Young JD, Cameron EM. Dynamics of skin blood flow in human sepsis. Intensive Care Med. 1995;21(8):669–74.CrossRefPubMedGoogle Scholar
  75. 75.
    Sair M, Etherington PJ, Peter WC, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29(7):1343–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Draijer M, Hondebrink E, van Leeuwen T, Steenbergen W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med Sci. 2009;24(4):639–51.CrossRefPubMedGoogle Scholar
  77. 77.
    Hecht N, Woitzik J, Konig S, Horn P, Vajkoczy P. Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures. J Cereb Blood Flow Metab. 2013;33(7):1000–7.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Boyle NH, Pearce A, Hunter D, Owen WJ, Mason RC. Intraoperative scanning laser Doppler flowmetry in the assessment of gastric tube perfusion during esophageal resection. J Am Coll Surg. 1999;188(5):498–502.CrossRefPubMedGoogle Scholar
  79. 79.
    Alexandre L, Jan B. Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients. Rev Bras Ter Intensiva. 2011;23(3):341–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre Augusto Pinto Lima
    • 1
  • Daniel De Backer
    • 2
  1. 1.Department of Intensive CareErasmus MC UniversityRotterdamThe Netherlands
  2. 2.CHIREC HospitalsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations