Advertisement

Sarcoma pp 257-272 | Cite as

Salvage Therapy and Palliative Care for Metastatic Sarcoma

  • Matthew WallaceEmail author
  • Albert Aboulafia
Chapter

Abstract

The care of a patient with metastatic disease involves multiple disciplines. One individual must be the designated leader and always be accessible to the patient and/or family. The medical oncologist often utilizes salvage chemotherapy regimens that balance both quality of life and deceleration of the progression of disease. The radiation oncologist plays an important role with the delivery of radiation to painful sites for palliation, and to sites that require greater local control to slow the disease down. When the disease has spread to the spine, the orthopedist or neurosurgeon aids in preventing paralysis or neurologic pain. A mental health professional may be necessary to treat reactive depression in both the patient and any family members and involved caretakers. The primary care physician often knows the patient and family best and may assist in pain control and the general health of all involved. Above all, a member of the healthcare team must manage the patient’s pain. Although it may not be possible to cure the patient with metastatic sarcoma, all efforts should be made to control the patient’s pain and optimize a patient’s function for the remaining duration of their life.

Keywords

Palliative Care Bone Metastasis Soft Tissue Sarcoma Pulmonary Metastasis Pulmonary Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Neglia JP, Friedman DL, Yasui Y, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood cancer survivor study. J Natl Cancer Inst. 2001;93(8):618–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Dossett LA, Toloza EM, Fontaine J, et al. Outcomes and clinical predictors of improved survival in patients undergoing pulmonary metastasectomy for sarcoma. J Surg Oncol. 2015;112(1):103–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Matsubara E, Mori T, Koga T, et al. Metastasectomy of pulmonary metastases from osteosarcoma: prognostic factors and indication for repeat metastasectomy. J Resp Med. 2015;2015:570314. 5 pagesGoogle Scholar
  4. 4.
    Kawaguchi S, Sun T, Lin PP, Deavers M, Harun N, Lewis VO. Does ifosfamide therapy improve survival of patients with dedifferentiated chondrosarcoma? Clin Orthop Relat Res. 2014;472(3):983–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Italiano A, Mir O, Cioffi A, et al. Advanced chondrosarcomas: role of chemotherapy and survival. Ann Oncol. 2013;24(11):2916–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yousaf N, Harris S, Martin-Liberal J, et al. First-line palliative chemotherapy in elderly patients with advanced soft tissue sarcoma. Clin Sarcoma Res. 2015;5:10.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Karavasilis V, Seddon BM, Ashley S, et al. Significant clinical benefit of first-line palliative chemotherapy in advanced soft tissue sarcoma: retrospective analysis and identification of prognostic factors in 488 patients. Cancer. 2008;112(7):1585–91.CrossRefPubMedGoogle Scholar
  8. 8.
    Garbay D, Maki RG, Blay JY, et al. Advanced soft-tissue sarcoma in elderly patients: patterns of care and survival. Ann Oncol. 2013;24(7):1924–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Iwata S, Ishii T, Kawai A, et al. Prognostic factors in elderly osteosarcoma patients: a multi-institutional retrospective study of 86 cases. Ann Surg Oncol. 2014;21(1):263–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Bramwell VH, Anderson D, Charette ML. Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft-tissue sarcoma: a meta-analysis and clinical practice guideline. Sarcoma. 2000;4(3):103–12.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Judson I, Verweij J, Gelderblom H, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomized controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Dahlin DC, Coventry MB. Osteogenic sarcoma: a study of six hundred cases. J Bone Joint Surg Am. 1967;49(1):101–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Eilber F, Giuliano A, Eckhardt J, Patterson K, Moseley S, Goodnight J. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol. 1987;5(1):21–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Bacci G, Farrar S, Bertoni F, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the Istituto Ortopedico Rizzoli according to the osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18(24):4016–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Maki RG. Ifosfamide in the neoadjuvant treatment of osteogenic sarcoma. J Clin Oncol. 2012;3(17):2033–5.CrossRefGoogle Scholar
  16. 16.
    Grier HE, Krailo MD, Tarbell NJ, et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med. 2003;348(8):694–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Cotterill SJ, Ahrens S, Paulussen M, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European intergroup cooperative Ewing’s sarcoma study group. J Clin Oncol. 2000;18(17):3108–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Campanna R, Bertoni F, Bacchini P, Bacci G, Guerra A, Campanacci M. Malignant fibrous histiocytoma of bone. The experience at the Rizzoli institute: report of 90 cases. Cancer. 1984;54(1):177–87.CrossRefGoogle Scholar
  19. 19.
    Bramwell VH, Steward WP, Nooij M, Whelan J, Craft AW, Grimer RJ, et al. Neoadjuvant chemotherapy with doxorubicin and cisplatin in malignant fibrous histiocytoma of bone: a European osteosarcoma intergroup study. J Clin Oncol. 1999;17(10):3260–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Jeon DG, Song WS, Kong CB, Kim JR, Lee SY. MFH of bone and osteosarcoma show similar survival and chemosensitivity. Clin Orthop Relat Res. 2001;469(2):584–90.CrossRefGoogle Scholar
  21. 21.
    Navid F, Willert JR, McCarville MB, Furman W, Watkins A, Roberts W, Daw NC. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer. 2008;113(2):419–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Casali PG, Picci P. Adjuvant chemotherapy for soft tissue sarcoma. Curr Opin Oncol. 2005;17(4):361–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Courmier JN, Pollock RE. Soft tissue sarcomas. CA Cancer J Clin. 2004;54(2):94–109.CrossRefGoogle Scholar
  24. 24.
    Sarcoma Meta-Analysis Collaboration. Adjuvant chemotherapy for localized resectable soft tissue sarcoma of adults: meta-analysis of individual data. Lancet. 1997;350(9092):1647–54.CrossRefGoogle Scholar
  25. 25.
    Patrikidou A, Domont J, Cioffi A, Le Cesne A. Treating soft tissue sarcomas with adjuvant chemotherapy. Curr Treat Options Oncol. 2012;17(8):515–27.Google Scholar
  26. 26.
    Maki RG, Wathen JK, Patel SR, et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002. J Clin Oncol. 2007;25(19):2755–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Penel N, Bui BN, Bay JO, et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma. J Clin Oncol. 2008;26(32):5269–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Rosen G, Forcher C, Lowenbraun S, et al. Synovial sarcoma: uniform response of metastases to high dose ifosfamide. Cancer. 1994;73(10):2506–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Arndt CA, Rose PS, Folpe AL, Laack NN. Common musculoskeletal tumors of childhood and adolescence. Mayo Clin Proc. 2012;87(5):475–87.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Okuno SH, Postel-Vinay S, Molife LR, Okuno SH, Schuetze SM, Paccagnella ML, et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing’s sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 2010;11:129–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Dubois SG, Shusterman S, Ingle AM, Ahern CH, Reid JM, Wu B, et al. Phase I and pharmacokinetic study of sunitinib in pediatric patients with refractory solid tumours: a children’s oncology group study. Clin Cancer Res. 2001;17:5113–22.CrossRefGoogle Scholar
  32. 32.
    Keir ST, Morton CL, Wu J, Kurmasheva RT, Houghton PJ, Smith MA. Initial testing of the multitargeted kinase inhibitor pazopanib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2012;59:586–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Subbiah V, Wagner MJ, McGuire MF, et al. Personalized comprehensive molecular profiling of high risk osteosarcoma: implications and limitations for precision medicine. Oncotarget. 2015;6(38):40642–54.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rahn DA, Mundt AJ, Murphy JD, Schiff D, Adams J, Murphy KT. Clinical outcomes of palliative radiation therapy for children. Pract Radiat Oncol. 2014;5(3):183–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Koontz BF, Clough RW, Halperin EC. Palliative radiation therapy for metastatic Ewing sarcoma. Cancer. 2006;106(8):1790–3.CrossRefPubMedGoogle Scholar
  36. 36.
    Chung PW, Deheshi BM, Ferguson PC, Wunder JS, Griffin AM, Catton CN, Bell RS, White LM, Kandel RA, O’Sullivan BO. Radiosensitivity translates into excellent local control in extremity Myxoid liposarcoma. Cancer. 2009;115(14):3254–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Brown LC, Lester RA, Grams MP, Haddock MG, Olivier KR, Arndt CA, Rose PS, Laack NN. Stereotactic body radiotherapy for metastatic and recurrent Ewing sarcoma and osteosarcoma. Sarcoma. 2014;2014:418270.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stragliotto CL, Karlsson K, Lax I, Rutkowska E, Bergh J, Strander H, Blomgren H, Friesland S. A retrospective study of SBRT of metastases in patients with primary sarcoma. Med Oncol. 2012;29(5):3431–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dhakal S, Corbin KS, Milano MT, Philip A, Sahasrabudhe D, Jones C, Constine LS. Stereotactic body radiotherapy for pulmonary metastases from soft-tissue sarcomas: excellent local lesion control and improved patient survival. Int J Radiat Oncol Biol Phys. 2012;82(2):940–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Eisenhut M. Iodine-131-labeled diphosphonates for the palliative treatment of bone metastases: I. Organ distribution and kinetics of I-131 BDP3 in rats. J Nucl Med. 1984;25(12):1356–61.PubMedGoogle Scholar
  41. 41.
    Blake GM, Zivanovic MA, McEwan AJ, Condon BR, Ackery DM. Strontium-89 therapy: strontium kinetics and dosimetry in two patients treated for metastasizing osteosarcoma. Br J Radiol. 1987;60(711):253–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Berger M, Grignani G, Giostra A, Ferrari S, Ferraresi V, et al. 153 samarium-EDTMP administration followed by hematopoietic stem cell support for bone metastases in osteosarcoma patients. Ann Oncol. 2012;23(7):1899–905.CrossRefPubMedGoogle Scholar
  43. 43.
    Franzius C, Schuck A, Bielack SS. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J Clin Oncol. 2002;20(1):189–96.CrossRefGoogle Scholar
  44. 44.
    Anderson PM, Subbiah V, Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: samarium-153-EDTMP and radium-223. Adv Exp Med Biol. 2014;804:291–304.CrossRefPubMedGoogle Scholar
  45. 45.
    Mavrogenis AF, Ross G, Altimari G, Calabro T, Angelini A, Palmerini E, Rimondi E, Ruggieri P. Palliative embolization for advanced bone sarcomas. Radiol Med. 2013;118(8):1344–59.CrossRefPubMedGoogle Scholar
  46. 46.
    Sanou R, Bazin C, Krakowski I, Boccaccini H, Mathias J, Beot S, Marchal F, Regent D. Radiofrequency ablation for palliation of soft tissue tumor pain. J Radiol. 2010;91(3):281–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Falk AT, Moureau-Zabotto L, Quali M, Penel N, Italiano A, Bay J, et al. Effect on survival of local ablative treatment of metastases from sarcomas: a study of the French sarcoma group. Clin Oncol. 2015;27(1):48–55.CrossRefGoogle Scholar
  48. 48.
    Bastianpillai C, Petrides N, Shah T, et al. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment. Tumour Biol. 2015;36(12):9137–46.CrossRefPubMedGoogle Scholar
  49. 49.
    Clarencon F, Jean B, Pham HP, Cormier E, Bensimon G, Rose M, Maksud P, Chiras J. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recover in painful bone metastases. Skeletal Radiol. 2013;42(1):25–36.CrossRefPubMedGoogle Scholar
  50. 50.
    Aboulafia AJ, Levine AM, Schmidt D, Aboulafia D. Surgical therapy of bone metastases. Semin Oncol. 2007;34(3):206–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.National Center for Bone and Soft Tissue TumorsMedStar Franklin Square Medical CenterBaltimoreUSA
  2. 2.Weinberg Cancer Institute, National Center for Bone and Soft Tissue TumorsMedStar Franklin Square Medical CenterBaltimoreUSA

Personalised recommendations