Epiphyte Vegetation

  • Christoph Leuschner
  • Heinz Ellenberg


One important life form was largely overlooked in the previous chapters on forest vegetation, namely the algae, lichens and bryophytes that colonise living trees and dead wood as epiphytes. These generally inconspicuous mosaics of cryptogams have often been ignored in classical forest vegetation studies, but have been gaining attention as early and sensitive indicators of air pollution or naturalness of forests since about the 1960s. Moreover, cryptogams often represent a large proportion of the flora of forests, in many cases outnumbering vascular plants in terms of species numbers. For example, it is estimated that central European beech forests are colonised by about 215 vascular plant species classified as ‘true’ forest species (Schmidt et al. 2003, 2011), equivalent to c. 7.2 % of the vascular flora. However, c. 190 bryophyte and c. 280 lichen species inhabit beech forests, i.e. c. 17 % of the respective flora. Thus, about two thirds of the beech forest flora (estimated at c. 685 plant species) are lichens and bryophytes. Epiphytes also can play an important role in nutrient cycling within forest ecosystems by influencing the amount and chemical composition of stemflow water, increasing fog interception in mountain forests and contributing to the fixation of CO2 and N2 by the forest vegetation.


  1. Arzani, G., 1974. Ökophysiologische Untersuchungen über die SO2-, HCl- und HF-Empfindlichkeit verschiedener Flechtenarten. PhD thesis Univ. Gießen. 136 p.Google Scholar
  2. Aude, E., Poulsen, R.S., 2000. Influence of management on the species composition of epiphytic cryptogams in Danish Fagus forests. Appl. Veg. Sci. 3: 81–88.CrossRefGoogle Scholar
  3. Barkman, J.J., 1958. Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum u. Comp., Assen (NL). 628 p.Google Scholar
  4. Barkman, J.J., 1962. Bibliographica phytosociologica cryptogamica. Pars I. Epiphyta. Excerpta Botan., Sect. B 4: 59–86.Google Scholar
  5. Barkman, J.J., 1968. Das systematische Problem der Mikrogesellschaften innerhalb der Biozönosen. In: Tüxen, R. (ed.): Pflanzensoziologische Systematik. Ber. Int. Symp. Stolzenau/Weser 1964. W. Junk, Den Haag: 21–48.Google Scholar
  6. Bates, J.W., 1992. Influence of chemical and physical factors on Quercus and Fraxinus epiphytes at Loch Sunart, western Scotland: a multivariate analysis. J. Ecol. 80: 163–179.CrossRefGoogle Scholar
  7. Bates, J.W., McNee, P.J., McLeod, A.R., 1996. Effects of sulphur dioxide and ozone on lichen colonization of conifers in the Liphook Forest Fumigation Project. New Phytol. 132: 653–660.CrossRefGoogle Scholar
  8. Bates, J.W., Bell, J.N.B., Massara, A.C., 2001. Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations. Atmosph. Environ. 35: 2557–2568.CrossRefGoogle Scholar
  9. Bibinger, H., 1970. Soziologische Gliederung der bartflechtenreichen Epiphytenvereine des Südschwarzwaldes. Herzogia 2: 1–24.Google Scholar
  10. Bielczyk, U., 1986. Epiphytic lichen-dominated communities in the Western Beskidy Mountains, Western Carpathians. Fragm. Florist. Geobot. 30: 3–89.Google Scholar
  11. Bilger, W., Rimke, S., Schreiber, U., Lange, O.L., 1989. Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. J. Plant Physiol. 134: 261–268.CrossRefGoogle Scholar
  12. Boucher, V.L., Stone, D.F., 1992. Epiphytic lichen biomass. In: Carroll, G.C., Wicklow, D.T. (eds.): The Fungal Community. Its Organization and Role in the Ecosystem. 2nd ed. Marcel Dekker, New York. pp. 583–599.Google Scholar
  13. Büdel, B., Lange, O.L., 1991. Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Botanica Acta 104: 361–366.CrossRefGoogle Scholar
  14. de Bakker, A.J., 1989. Effects of ammonia emission on epiphytic lichen vegetation. Acta Bot. Neerl. 38: 337–342.Google Scholar
  15. Drehwald, U., 1993. Die Pflanzengesellschaften Niedersachsens. Bestandsentwicklung, Gefährdung und Schutzprobleme. Flechtengesellschaften. Schr.-R. Natursch. Niedersachsen 20, 10: 122 p.Google Scholar
  16. Drehwald, U., Preising, E., 1991. Die Pflanzengesellschaften Niedersachsens. Bestandsentwicklung, Gefährdung und Schutzprobleme. Moosgesellschaften. Schr.-R. Natursch. Niedersachsen 20, 9: 202 p.Google Scholar
  17. Duvigneaud, P., Kestemont, P., (ed.) 1977. Productivité biologique en Belgique. SCOPE, Trav. Sect. Belge Progr. Biol. Internat. (Paris-Gembloux): 617 p.Google Scholar
  18. Ellenberg, H., Weber, H.E., Düll R., Wirth, V., Werner, W., 2001. Zeigerwerte von Pflanzen in Mitteleuropa. 3. ed. Goltze, Göttingen. 262 p.Google Scholar
  19. Esseen, P.-A., 1994. Tree mortality patterns after experimental fragmentation of an old-growth conifer forest. Biol. Conserv. 68: 19–28.CrossRefGoogle Scholar
  20. Esseen, P.-A., Renhorn, K.-E., 1998. Edge effects on an epiphytic lichen in fragmented forests. Conserv. Biol. 12: 1307–1317.CrossRefGoogle Scholar
  21. Fabiszewski, J., 1967. Associations de lichens arboricoles dans les forets des Sudètes orientales. Vegetatio 15 : 137–165.CrossRefGoogle Scholar
  22. Fabiszewski, J., 1968. Les lichens du Massif Snieznik et des Montagnes Bialskie dans les Sudètes orientales. Monogr. Botan. (Warszawa) 26: 115 p.Google Scholar
  23. Ellenberg, H., Mayer, R., Schauermann, J., 1986. Ökosystemforschung – Ergebnisse des Sollingprojekts 1966–1986. Ulmer, Stuttgart. 507 p.Google Scholar
  24. Frahm, J.-P.: Die Vegetation auf Rethdächern. PhD thesis, University of Kiel. (1972). 212 pGoogle Scholar
  25. Frahm, J.-P., 1993. Veränderungen der Moosflora in den letzten 20 Jahren. Bryol. Rundbriefe 13: 4–6.Google Scholar
  26. Frey, E., 1958. Die anthropogenen Einflüsse auf die Flechtenflora in verschiedenen Gebieten der Schweiz. Veröff. Geobot. Inst. Rübel, Zürich 33: 91–107.Google Scholar
  27. Gauslaa, Y., 1995. The Lobarion, an epiphytic community of ancient forests, threatened by acid rain. Lichenologist 27: 59–76.Google Scholar
  28. Gauslaa, Y., Holien, H., 1998. Acidity of boreal Picea abies-canopy lichens and their substratum, modified by local soils and airborne acidic depositions. Flora 193: 249–257.CrossRefGoogle Scholar
  29. Gauslaa, Y., Solhaug, K.A., 1996. Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct. Ecol. 10: 344–354.CrossRefGoogle Scholar
  30. Giordani, P., Calatayud, V., Stofer, S. et al. 2014. Detecting nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For. Ecol. Manage. 311: 19–40.CrossRefGoogle Scholar
  31. Grodzinska, K., 1971. Acidification of tree bark as a measure of air pollution in Southern Poland. Bull. Acad. Polon. Sci., Sér. Biol. Cl. II, 19: 189–195.Google Scholar
  32. Hauck, M., 1992. Rote Liste der gefährdeten Flechten in Niedersachsen und Bremen. Informationsdienst Natursch. Nieders. (Hannover) 1/92: 44 p.Google Scholar
  33. Hauck, M., 1995a. Veränderungen der Flechtenflora im Raum Göttingen (Südniedersachsen). Herzogia 11: 207–218.Google Scholar
  34. Hauck, M., 1995b. Epiphytische Flechtenflora ausgewählter buchen- und eichenreicher Laubalthölzer in Niedersachsen. Informationsdienst Natursch. Nieders. (Hannover) 14: 55–70.Google Scholar
  35. Hauck, M., 2005. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution. Environ. Poll. 135: 111–119.CrossRefGoogle Scholar
  36. Hauck, M., 2008. Susceptibility to acidic precipitation contributes to the decline of the terricolous lichens Cetraria aculeata and Cetraria islandica in central Europe. Environ. Poll. 152: 731–735.CrossRefGoogle Scholar
  37. Hauck, M., Jürgens, S.-R., 2008. Usnic acid controls the acidity tolerance of lichens. Environ. Poll. 156: 115–122.CrossRefGoogle Scholar
  38. Hauck, M., Paul, A., 2005. Manganese as a site factor for epiphytic lichens. Lichenologist 37: 409–423.CrossRefGoogle Scholar
  39. Hauck, M., Runge, M., 2002. Stemflow chemistry and epiphytic lichen diversity in dieback-affected spruce forest of the Harz Mountains, Germany. Flora 197: 250–261.CrossRefGoogle Scholar
  40. Hauck, M., Jung, R., Runge, M., 2000. Does water-holding capacity of bark have an influence on lichen performance in dieback-affected spruce forests? Lichenologist 32: 407–409.CrossRefGoogle Scholar
  41. Hauck, M., Jürgens, S.-R., Brinkmann, M., Herminghaus, S., 2008. Surface hydrophobicity causes SO2 tolerance in lichens. Ann. Bot. 101: 531–539.CrossRefGoogle Scholar
  42. Hauck, M., Otto, P.I., Dittrich, S., Jacob, M., Bade, C., Dörfler, I., Leuschner, C. 2011. Small increase in substratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann. Bot. (London) 108: 359–366.CrossRefGoogle Scholar
  43. Hauck, M., de Bruyn, U., Leuschner, C. 2013. Dramatic diversity losses in epiphytic lichens in temperate broad-leaved forests during the last 150 years. Biol. Conserv. 157: 136–145.CrossRefGoogle Scholar
  44. Hawksworth, D.L., 1990. The long-term effects of air pollutants on lichen communities in Europe and North America. In: Woodwell, G.M. (ed.): The Earth in Transition: Patterns and Processes of Biotic Impoverishment. Cambridge Univ. Press, Cambridge. pp. 45–64.Google Scholar
  45. Hertel, H., Schwaiger, J., Vorwerk, B., 2000. Die Flechtenflora der Staatsforste am Südrand Münchens, einst und jetzt. Hoppea, Denkschr. Regensburger Bot. Ges. 61: 445–524.Google Scholar
  46. Herzig, R., Urech, M., 1991. Flechten als Bioindikatoren. Integriertes biologisches Meßsystem der Luftverschmutzung für das Schweizer Mittelland. Bibliotheca Lichenologica (Stuttgart) 43: 283 p.Google Scholar
  47. Hilmo, O., Holien, H., 2002. Epiphytic lichen response to the edge environment in a boreal Picea abies forest in Central Norway. The Bryologist 105: 48–56.CrossRefGoogle Scholar
  48. Hilmo, O. Sastad, S.M., 2001. Colonization of old-forest lichens in a young and an old boreal Picea abies forest: an experimental approach. Biol. Conserv. 102: 251–259.CrossRefGoogle Scholar
  49. Hilmo, O., Hytteborn, H., Holien, H., 2005. Do different logging strategies influence the abundance of epiphytic chlorolichens? Lichenologist 37: 543–553.CrossRefGoogle Scholar
  50. Holien, H., 1996. Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area in central Norway. Lichenologist 28: 315–330.CrossRefGoogle Scholar
  51. Holien, H., 1998. Lichens in spruce forest stands of different successional stages in central Norway with emphasis on diversity and old growth species. Nova Hedwigia 66: 283–324.Google Scholar
  52. Jacobsen, P., 1992. Flechten in Schleswig-Holstein: Bestand, Gefährdung und Bedeutung als Bioindikatoren. Mitt. Arb.gem. Geobot. Schlesw.-Holst. 42: 234 p.Google Scholar
  53. Jürging, P., 1975. Epiphytische Flechten als Bioindikatoren der Luftverunreinigung. Bibliotheca Lichenologica (Stuttgart) 4: 164 p.Google Scholar
  54. Kalb, K., 1970. Flechtengesellschaften der vorderen Ötztaler Alpen. Diss. Bot. 9: 118 p.Google Scholar
  55. Kandler, O., Poelt, J., 1984. Wiederbesiedlung der Innenstadt von München durch Flechten. Naturw. Rundschau (Stuttgart) 7: 90–95.Google Scholar
  56. Kershaw, K.A., 1985. Physiological Ecology of Lichens. Cambridge Univ. Press, Cambridge.Google Scholar
  57. Kirschbaum, U., Marx, A., Schiek, J.E., 1996. Beurteilung der lufthygienischen Situation Gießens und Wetzlars mittels epiphytischer Flechten. J. Appl. Bot. 70: 78–96.Google Scholar
  58. Klement, O., 1966. Vom Flechtensterben im nördlichen Deutschland. Ber. Naturhist. Ges. Hannover 108: 31–39.Google Scholar
  59. Klement, O., 1971. Über Flechten der Eilenriede. Beih. Ber. Naturhist. Ges. Hannover 7: 139–142.Google Scholar
  60. Koperski, M., 1998. Zur Situation epiphytischer Moose in Eichen-Buchenaltbeständen des niedersächsischen Tieflandes. Forst u. Holz 53: 137–139.Google Scholar
  61. Köstner, B., Lange, O.L., 1986. Epiphytische Flechten in bayerischen Waldschadensgebieten des nördlichen Alpenraumes. Ber. Akad. Naturschutz Landschaftspfl. (Laufen) 10: 185–210.Google Scholar
  62. Kunze, M., 1972. Emittentenbezogene Flechtenkartierung aufgrund von Frequenzuntersuchungen. Oecologia 9: 123–133.CrossRefGoogle Scholar
  63. Kunze, M., 1974. Mathematischer Zusammenhang zwischen der Frequenz epiphytischer Flechten und der Fluor-Immissionsrate am Beispiel der Aluminiumhütte Rheinfelden. Beih. Veröff. Landesstelle Naturschutz u. Landschaftspfl. Baden-Württemberg 5: 5–13.Google Scholar
  64. Kupfer-Wesely, E., Türk, R., 1987. Epiphytische Flechtengesellschaften im Traunviertel (Oberösterreich). Stapfia 15: 138 p.Google Scholar
  65. Lahm, G., 1885. Zusammenstellung der in Westfalen beobachteten Flechten unter Berücksichtigung der Rheinprovinz. Münster/W.Google Scholar
  66. Lange, O.L., 2000. Photosynthetic performance of a gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. In: Schroeter, B., Schlensog, M., Green, T.G.A. (eds.): New Aspects in Cryptogamic Research. Contribution in Honour of Ludger Kappen. Bibliotheca Lichenologica (Stuttgart): pp. 307–332.Google Scholar
  67. Lange, O.L., 2002. Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 gas exchange and its physiological interpretation. I. Dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197: 23–249.CrossRefGoogle Scholar
  68. Lange, O.L., 2003. Photosynthetic productivity of the epilithic lichen Lecanora muralis: Long-term field monitoring of CO2 gas exchange and its physiological interpretation. III. Diel, seasonal, and annual carbon budgets. Flora 198: 277–292.Google Scholar
  69. Lange, O.L., Büdel, B., Meyer, A., Kilian, E., 1993. Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25: 175–189.CrossRefGoogle Scholar
  70. Lötschert, W., Köhm, H.-J., 1973. pH-Wert und S-Gehalt der Baumborke in Immissionsgebieten. Oecol. Plant. 8: 199–209.Google Scholar
  71. Lötschert, W., Wandtner, R., Hiller, H., 1975. Schwermetallanreicherung bei Bodenmoosen in Immissionsgebieten. Ber. Deut. Bot. Ges. 88: 419–431.Google Scholar
  72. Macher, M., Steubing, L., 1986. Flechten als Bioindikatoren zur immissionsökologischen Waldzustandserfassung im Nationalpark Bayerischer Wald. Verh. Ges. Ökol. 14: 335–342.Google Scholar
  73. Marstaller, R., 1993. Systematische Übersicht der Moosgesellschaften Zentraleuropas. Herzogia 9: 513–541.Google Scholar
  74. Mayer, W., Pfefferkorn-Dellali, V., Türk, R., Dullinger, S., Mirtl, M., Dirnböck, T. 2013. Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic Appl. Ecol. 14: 396–403.CrossRefGoogle Scholar
  75. Meinunger, L. 1992. Florenatlas der Moose und Gefäßpflanzen des Thüringer Waldes, der Rhön und angrenzender Gebiete. Haussknechtia, Beihefte 3. Koeltz Sci. Books, Königstein.Google Scholar
  76. Möller, H., Daniels, F.J.A., 2000. Untersuchungen zur epiphytischen Flechtenflora ausgewählter Stadtbiotope der Stadt Münster, Westfalen. Natur und Heimat 60: 65–78.Google Scholar
  77. Muhle, H., 1977. Ein Epiphytenkataster niedersächsischer Naturwaldreservate. Mitt. Florst.-Soziol. Arb.gem. N.F. 19/20: 47–62.Google Scholar
  78. Müller, J., 1981. Experimentell-ökologische Untersuchungen zum Flechtenvorkommen auf Bäumen an naturnahen Standorten. Hochschulsammlung Naturwiss. Biol. 14: 1–322.Google Scholar
  79. Nascimbene, J., Thor, G., Nimis, P.L., 2013. Effects of forest management on epiphyte lichens in temperate deciduous forests of Europe – a review. For. Ecol. Manage. 298: 27–38.CrossRefGoogle Scholar
  80. Nash, T.H., Nash, E.H., 1974. Sensitivity of mosses to sulfur dioxide. Oecologia 17: 257–263.CrossRefGoogle Scholar
  81. Olsson, K., 1995. Changes in epiphytic lichen and moss flora in some beech forests in southern Sweden during 15 years. Ecol. Bull. 44: 238–247.Google Scholar
  82. Renhorn, K.-E., Esseen, P.-A., Palmqvist, K., Sundberg, B., 1997. Growth and vitality of epiphytic lichens. I. Responses to microclimate along a forest edge-interior gradient. Oecologia 109: 1–9.CrossRefGoogle Scholar
  83. Rikkinen, J., 1995. What’s behind the pretty colours? A study of the photobiology of lichens. Bryobrothera 4: 1–239.Google Scholar
  84. Rose, F., 1988. Phytogeographical and ecological aspects of Lobarion communities in Europe. Bot. J. Linnean Soc. 96: 69–79.CrossRefGoogle Scholar
  85. Rose, F., 1992. Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates, J.W., Farmer, A.M. (eds.): Bryophytes and Lichens in a Changing Environment. Clarendon Press, Oxford. pp. 211–233.Google Scholar
  86. Sandstede, H., 1950. Veränderungen in der Flora unserer engeren Heimat. Oldenburger Jahrbuch 50: 304–311.Google Scholar
  87. Schmidt, M., Ewald, J., Fischer, A., v. Oheimb, G., Kriebitzsch, W.-U., Ellenberg, H., Schmidt, W., 2003. Liste der Waldgefäßpflanzen Deutschlands. Mitt. Bundesforschungsanst. f. Forst- u. Holzwirtsch. (Hamburg) 212: 1–36.Google Scholar
  88. Schmidt, M., Kriebitzsch, W.-U., Ewald, J. (eds.) 2011. Waldartenliste der Farn- und Blütenpflanzen, Moose und Flechten Deutschlands. BfN-Skripten 299. Bundesamt f. Naturschutz, Bonn.Google Scholar
  89. Schmull, M., Hauck, M. 2003. Element microdistribution in the bark of Abies balsamica and Picea rubens and its impact on epiphytic lichen abundance on Whiteface Mountain, New York. Flora 198: 293-303.CrossRefGoogle Scholar
  90. Schneider, R., 1985. Kartierung der epiphytischen Flechtenvegetation im Raum Bremen – Lüneburger Heide. Veröff. Übersee-Mus. Bremen R.A. 7: 129 p.Google Scholar
  91. Seaward, M.R.D. (ed.), 1977. Lichen Ecology. Academic Press, London. 550 p.Google Scholar
  92. Seaward, M.R.D., 1993. Lichens and sulphur dioxide air pollution: field studies. Environ. Res. 1: 73–91.CrossRefGoogle Scholar
  93. Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R., Ruchty, A., 2000. Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecol. Appl. 10: 789–799.CrossRefGoogle Scholar
  94. Skye, E., 1968. Lichens and air pollution. A study of cryptogamic epiphytes and environment in the Stockholm region. Acta Phytogeogr. Suecica 52: 1–123.Google Scholar
  95. Sochting, U., Johnson, I., 1974. Changes in the distribution of epiphytic lichens in the Copenhagen area from 1936 to 1972. Botan. Tidskr. 69: 60–63.Google Scholar
  96. Solhaug, K.A., Gauslaa, Y., 1996. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108: 412–418.Google Scholar
  97. Solhaug, K.A., Gauslaa, Y., Nybakken, L., Bilger, W., 2003. UV-induction of sun-screening pigments in lichens. New Phytol. 158: 91–100.CrossRefGoogle Scholar
  98. Thiele, A., 1974. Luftverunreinigungen und Stadtklima im Großraum München, insbesondere in ihrer Auswirkung auf epixyle Testflechten. Bonner Geogr. Abh. 49: 175 p.Google Scholar
  99. Tibell, L., 1992. Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nordic J. Bot. 12: 427–450.CrossRefGoogle Scholar
  100. Tobler, F., Mattick, F., 1938. Die Flechtenbestände der Heiden und der Reitdächer Nordwestdeutschlands. Bibl. Botanica 117: 1–72.Google Scholar
  101. Türk, R., Wirth, V., 1975. The pH dependence of SO2 damage to lichens. Oecologia 19: 285–291.CrossRefGoogle Scholar
  102. van Herk, C.M., 1999. Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31: 9–20.Google Scholar
  103. van Herk, C.M., 2001. Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33: 419–441.Google Scholar
  104. van Herk, C.M., Aptroot, A., 1998. Recovery of epiphytic lichens in the Netherlands. British Lichen Soc. Bull. 82: 22–26.Google Scholar
  105. van Herk, C.M., Aptroot, A., van Dobben, H.F., 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34: 141–154.CrossRefGoogle Scholar
  106. van Herk, C. M., Mathijssen-Spiekman, E. A. M., de Zwart, D. 2003. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35: 347–360.Google Scholar
  107. Wilmanns, O., 1966. Anthropogener Wandel der Kryptogamen-Vegetation in Südwestdeutschland. Ber. Geobot. Inst. ETH, Stiftg. Rübel, Zürich 37: 74–87.Google Scholar
  108. Wirth, V., 1968. Soziologie, Standortsökologie und Areal des Lobarion pulmonariae im Südschwarzwald. Bot. Jb. 88: 317–365.Google Scholar
  109. Wirth, V., 1972. Die Silikatflechten-Gemeinschaften im außeralpinen Zentraleuropa. Diss. Bot. 17. 306 p.Google Scholar
  110. Wirth, V., 1978. Die Kartierung von Flechten in Baden-Württemberg und ihr Beitrag zum Schutz von Arten und Biotopen. Beih. Veröff. Natursch. Landschaftspfl. Baden-Württemb. 11: 135–154.Google Scholar
  111. Wirth, V., 1980. Flechtenflora. Ökologische Kennzeichnung und Bestimmung der Flechten Süddeutschlands und angrenzender Gebiete. Ulmer, Stuttgart. 552 p.Google Scholar
  112. Wirth., V.., 1985. Zur Ausbreitung, Herkunft und Ökologie anthropogen geförderter Rinden- und Holzflechten. Tuexenia 5: 523–535.Google Scholar
  113. Wirth, V., 1987. Die Flechten Baden-Württembergs. Verbreitungsatlas. Ulmer, Stuttgart. 528 p.Google Scholar
  114. Wirth, V., 1988. Phytosociological approaches to air pollution monitoring with lichens. Bibliotheca Lichenologica 30: 91–107.Google Scholar
  115. Wirth, J., 1993. Rhamno-Prunetea. In: Mucina, L., Grabherr, G., Wallnhöfer, S. (eds.): Die Pflanzengesellschaften Österreichs. 3. Wälder und Gebüsche. Fischer, Jena. pp. 60–84.Google Scholar
  116. Wirth, J., 1993b. Rhamno-Prunetea. In: Mucina, L., Grabherr, G., Wallnhöfer, S. (eds.): Die Pflanzengesellschaften Österreichs. 3. Wälder und Gebüsche. Fischer, Jena. pp. 60-84.Google Scholar
  117. Wirth, V., 1993a. Trendwende bei der Ausbreitung der anthropogen geförderten Flechte Lecanora coniazaeoides? Phytocoenologia 23: 625–636.CrossRefGoogle Scholar
  118. Wirth, V., 1995. Die Flechten Baden-Württembergs. 2. ed. Teil 1 u. 2. Ulmer, Stuttgart. 1006 p.Google Scholar
  119. Wirth, V., Fuchs, M., 1980. Zur Veränderung der Flechtenflora in Bayern. Forderungen und Möglichkeiten des Artenschutzes. Schriftenr. Naturschutz Landschaftspfl. 12: 29–43.Google Scholar
  120. Wirth, V., Schöller, H., Scholz, P. et al., 1996. Rote Liste der Flechten (Lichenes) der Bundesrepublik Deutschland. Schriftenr. f. Vegetationskde (Bonn-Bad Godesberg) 28: 307–368.Google Scholar
  121. Wittmann, H., Türk, R., 1988. Immissionsbedingte Flechtenzonen im Bundesland Salzburg (Österreich) und ihre Beziehungen zum Problemkreis „Waldsterben“. Ber. Akad. Naturschutz Landschaftpfl. (Laufen) 12: 247–258.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Christoph Leuschner
    • 1
  • Heinz Ellenberg
    • 2
  1. 1.Plant EcologyUniversity of GöttingenGöttingenGermany
  2. 2.University of GöttingenGöttingenGermany

Personalised recommendations