Irradiation-Induced Processes with Atomic Clusters and Nanoparticles

  • Alexey VerkhovtsevEmail author
  • Andrei V. Korol
  • Andrey V. Solov’yov


This chapter gives an overview of theoretical and computational studies of physical phenomena manifesting themselves in photon, electron and ion collisions with atomic clusters and nanoparticles (NPs). The emphasis is made on ion and electron scattering as well as photoabsorption of metal NPs which are of current interest in application in cancer treatments with ionizing radiation. Although the number of reports on dose enhancement and radiosensitization due to metal NPs has been rapidly increasing during the past years, physical mechanisms of enhanced production of secondary electrons and reactive species due to sensitizing NPs are still a debated issue and require thorough investigation. In this chapter, we elucidate the essential role of collective electron excitations in the formation of electron emission spectra of metal clusters and NPs. These effects appear also in other types of nanoscale systems, such as carbon-based NPs. We also briefly overview a number of recent Monte Carlo-based studies devoted to the investigation of radiosensitization and dose enhancement effects for proton irradiation combined with metal NPs.


Metal Cluster Plasmon Mode Electron Attachment Plasmon Excitation Electron Energy Loss Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the financial support received from the European Union Seventh Framework Programme (PEOPLE-2013-ITN-ARGENT project) under grant agreement no. 608163.


  1. 1.
    Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3CrossRefGoogle Scholar
  2. 2.
    Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2:129–141Google Scholar
  3. 3.
    Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364CrossRefGoogle Scholar
  4. 4.
    Hainfeld JJ, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315CrossRefGoogle Scholar
  5. 5.
    Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platimun nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:085103ADSCrossRefGoogle Scholar
  6. 6.
    McMahon SJ et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:8; Corrigendum: ibid. 3, 1725 (2013)Google Scholar
  7. 7.
    Zhang X-D et al (2015) Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep 5:8669ADSCrossRefGoogle Scholar
  8. 8.
    McQuaid HN et al (2016) Imaging and radiation effects of gold nanoparticles in tumour cells. Sci Rep 6:19442ADSCrossRefGoogle Scholar
  9. 9.
    FP7 Initial Training Network Project “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies” (ARGENT),
  10. 10.
    Ali H, van Lier JE (1999) Metal complexes as photo- and radiosensitizers. Chem Rev 99:2379–2450CrossRefGoogle Scholar
  11. 11.
    Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838ADSCrossRefGoogle Scholar
  12. 12.
    Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C (2010) Enhancement of radiation effect by heavy elements. Mutat Res 704:123–131CrossRefGoogle Scholar
  13. 13.
    Xiao F, Zheng Y, Cloutier P, He Y, Hunting D, Sanche L (2011) On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 22:465101ADSCrossRefGoogle Scholar
  14. 14.
    Zheng Y, Hunting DJ, Ayotte P, Sanche L (2008) Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat Res 169:19–27; Erratum: ibid. 169, 481–482 (2008)Google Scholar
  15. 15.
    Sicard-Roselli C et al (2014) A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small 10:3338–3346CrossRefGoogle Scholar
  16. 16.
    Surdutovich E, Solov’yov AV (2014) Multiscale approach to the physics of radiation damage with ions. Eur Phys J D 68:353ADSCrossRefGoogle Scholar
  17. 17.
    Garcia Gomez-Tejedor G, Fuss MC (ed) (2012) Radiation damage in biomolecular systems. Springer Science+Business Media B.VGoogle Scholar
  18. 18.
    Boudaiffa B, Cloutier P, Hunting D, Huels MA, Sanche L (2000) Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287:1658–1660ADSCrossRefGoogle Scholar
  19. 19.
    Huels MA, Boudaiffa B, Cloutier P, Hunting D, Sanche L (2003) Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons. J Am Chem Soc 125:4467–4477CrossRefGoogle Scholar
  20. 20.
    Jain S et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539CrossRefGoogle Scholar
  21. 21.
    Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113CrossRefGoogle Scholar
  22. 22.
    Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, Wang C, Gu N (2013) Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale 5:11829–11836ADSCrossRefGoogle Scholar
  23. 23.
    Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R (2014) Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. Nanomed Nanotechnol 10:1751–1755CrossRefGoogle Scholar
  24. 24.
    Miladi I et al (2015) Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. Nanomed Nanotechnol 11:247–257CrossRefGoogle Scholar
  25. 25.
    Porcel E et al (2014) Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed Nanotechnol 10:1601–1608CrossRefGoogle Scholar
  26. 26.
    Kim J-K et al (2010) Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology 21:425102ADSCrossRefGoogle Scholar
  27. 27.
    Polf JC, Bronk LF, Driessen WHP, Arap W, Pasqualini R, Gillin M (2011) Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett 98:193702ADSCrossRefGoogle Scholar
  28. 28.
    Schlathölter T et al (2016) Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomed 11:1549–1556CrossRefGoogle Scholar
  29. 29.
    McMahon SJ, Paganetti H, Prise KM (2016) Optimising element choice for nanoparticle radiosensitisers. Nanoscale 8:581–589ADSCrossRefGoogle Scholar
  30. 30.
    Sancey L et al (2014) The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 87:20140134CrossRefGoogle Scholar
  31. 31.
    Baccarelli I, Gianturco FA, Scifoni E, Solov’yov AV, Surdutovich E (2010) Molecular level assessments of radiation biodamage. Eur Phys J D 60:1–10ADSCrossRefGoogle Scholar
  32. 32.
    Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425ADSCrossRefGoogle Scholar
  33. 33.
    Wälzlein C, Scifoni E, Krämer M, Durante M (2014) Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol 59:1441–1458CrossRefGoogle Scholar
  34. 34.
    Lin Y, McMahon SJ, Scarpelli M, Paganetti H, Schuemann J (2014) Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol 59:7675–7689CrossRefGoogle Scholar
  35. 35.
    Lin Y, McMahon SJ, Paganetti H, Schuemann J (2015) Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys Med Biol 60:4149–4168CrossRefGoogle Scholar
  36. 36.
    Martinez-Rovira I, Prezado Y (2015) Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med Phys 42:6703–6710CrossRefGoogle Scholar
  37. 37.
    Krämer M, Kraft G (1994) Calculations of heavy-ion track structure. Radiat Environ Biophys 33:91–109CrossRefGoogle Scholar
  38. 38.
    Perl J, Shin J, Schümann J, Faddegon B, Paganetti H (2012) TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys 39:6818–6837Google Scholar
  39. 39.
    GEANT4, LEEPWG–Low Energy Electromagnetic Physics Working Group (2013).
  40. 40.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin-HeidelbergCrossRefGoogle Scholar
  41. 41.
    Dinh PM, Reinhard P-G, Suraud E (2013) An introduction to cluster science. Wiley, 2013Google Scholar
  42. 42.
    Bréchignac C, Cahuzac Ph, Carlier F, Leygnier J (1989) Collective excitation in closed-shell potassium cluster ions. Chem Phys Lett 164:433–437ADSCrossRefGoogle Scholar
  43. 43.
    Selby K, Vollmer M, Masui J, Kresin V, de Heer WA, Knight WD (1989) Surface plasma resonances in free metal clusters. Phys Rev B 40:5417–5427ADSCrossRefGoogle Scholar
  44. 44.
    Hertel IV, Steger H, de Vries J, Weisser B, Menzel C, Kamke B, Kamke W (1992) Giant plasmon excitation in free C\(_{60}\) and C\(_{70}\) molecules studied by photoionization. Phys Rev Lett 68:784–787ADSCrossRefGoogle Scholar
  45. 45.
    Ling Y, Lifshitz C (1996) Plasmon excitation in polycyclic aromatic hydrocarbons studied by photoionization. Chem Phys Lett 257:587–591ADSCrossRefGoogle Scholar
  46. 46.
    Liebsch T et al (1995) Angle-resolved photoelectron spectroscopy of C\(_{60}\). Phys Rev A 52:457–464ADSCrossRefGoogle Scholar
  47. 47.
    Liebsch T et al (1996) Photoelectron spectroscopy of free fullerenes. J Electron Spectrosc Relat Phenom 79:419–422CrossRefGoogle Scholar
  48. 48.
    Gerchikov LG, Connerade JP, Solov’yov AV, Greiner W (1997) Scattering of electrons on metal clusters and fullerenes. J Phys B: At Mol Opt Phys 30:4133–4161ADSCrossRefGoogle Scholar
  49. 49.
    Gerchikov LG, Ipatov AN, Solov’yov AV (1997) Many-body treatment of electron inelastic scattering on metal clusters. J Phys B: At Mol Opt Phys 30:5939–5959ADSCrossRefGoogle Scholar
  50. 50.
    Gerchikov LG, Ipatov AN, Solov’yov AV, Greiner W (1998) Excitation of multipole plasmon resonances in clusters by fast electron impact. J Phys B: At Mol Opt Phys 31:3065–3077ADSCrossRefGoogle Scholar
  51. 51.
    Gerchikov LG, Efimov PV, Mikoushkin VM, Solov’yov AV (1998) Diffraction of fast electrons on the fullerene C\(_{60}\) molecule. Phys Rev Lett 81:2707–2710ADSCrossRefGoogle Scholar
  52. 52.
    Gerchikov LG, Ipatov AN, Polozkov RG, Solov’yov AV (2000) Surface and volume plasmon excitation in electron inelastic scattering on metal clusters. Phys Rev A 62:043201ADSCrossRefGoogle Scholar
  53. 53.
    Verkhovtsev AV, Korol AV, Solov’yov AV, Bolognesi P, Ruocco A, Avaldi L (2012) Interplay of the volume and surface plasmons in the electron energy loss spectra of C\(_{60}\). J Phys B: At Mol Opt Phys 45:141002ADSCrossRefGoogle Scholar
  54. 54.
    Bolognesi P, Avaldi L, Ruocco A, Verkhovtsev A, Korol AV, Solov’yov AV (2012) Collective excitations in the electron energy loss spectra of C\(_{60}\). Eur Phys J D 66:254ADSCrossRefGoogle Scholar
  55. 55.
    Connerade J-P, Solov’yov AV (2002) Formalism for multiphoton plasmon excitation in jellium clusters. Phys Rev A 66:013207ADSCrossRefGoogle Scholar
  56. 56.
    Ivanov VK, Kashenock GYu, Polozkov RG, Solov’yov AV (2001) Photoionization cross sections of the fullerenes C\(_{20}\) and C\(_{60}\) calculated in a simple spherical model. J Phys B: At Mol Opt Phys 34:L669–L677ADSCrossRefGoogle Scholar
  57. 57.
    Verkhovtsev AV, Korol AV, Solov’yov AV (2013) Quantum and classical features of the photoionization spectrum of C\(_{60}\). Phys Rev A 88:043201ADSCrossRefGoogle Scholar
  58. 58.
    Landau LD, Lifshitz EM (1976) Quantum Mechanics: non-relativistic theory. 3rd edn. Course of Theoretical Physics, vol. 3. Butterworth-HeinemannGoogle Scholar
  59. 59.
    de Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676ADSCrossRefGoogle Scholar
  60. 60.
    Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:677–732ADSCrossRefGoogle Scholar
  61. 61.
    Bréchignac C, Connerade JP (1994) Giant resonances in free atoms and in clusters. J Phys B: At Mol Opt Phys 27:3795–3828ADSCrossRefGoogle Scholar
  62. 62.
    Haberland H (ed) (1994) Clusters of atoms and molecules, theory, experiment and clusters of atoms. Springer Series in Chemical Physics, vol. 52. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  63. 63.
    Korol AV, Solov’yov AV (1997) Polarizational bremsstrahlung of electrons in collisions with atoms and clusters. J Phys B: At Mol Opt Phys 30:1105–1150ADSCrossRefGoogle Scholar
  64. 64.
    Alasia F, Broglia RA, Roman HE, Serra L, Colo G, Pacheco JM (1994) Single-particle and collective degrees of freedom in C\(_{60}\). J Phys B: At Mol Opt Phys 27:L643–L650ADSCrossRefGoogle Scholar
  65. 65.
    Madjet M, Guet C, Johnson WR (1995) Comparative study of exchange-correlation effects on the electronic and optical properties of alkali-metal clusters. Phys Rev A 51:1327–1339ADSCrossRefGoogle Scholar
  66. 66.
    Campbell EE, Rohmund F (2000) Fullerene reactions. Rep Prog Phys 63:1061–1109ADSCrossRefGoogle Scholar
  67. 67.
    Berkowitz J (1999) Sum rules and the photoabsorption cross sections of C\(_{60}\). J Chem Phys 111:1446–1453ADSCrossRefGoogle Scholar
  68. 68.
    Reinköster A, Korica S, Viefhaus J, Godenhusen K, Schwarzkopf O, Mast M, Becker U (2004) The photoionization and fragmentation of C\(_{60}\) in the energy range 26–130 eV. J Phys B: At Mol Opt Phys 37:2135–2144ADSCrossRefGoogle Scholar
  69. 69.
    Scully SWJ et al (2005) Photoexcitation of a volume plasmon in C\(_{60}\) ions. Phys Rev Lett 94:065503ADSCrossRefGoogle Scholar
  70. 70.
    Baral KK et al (2016) Photoionization and photofragmentation of the C\(_{60}^+\) molecular ion. Phys Rev A 93:033401ADSCrossRefGoogle Scholar
  71. 71.
    Solov’yov AV (2005) Plasmon excitations in metal clusters and fullerenes. Int J Mod Phys B 19:4143–4184ADSCrossRefGoogle Scholar
  72. 72.
    Verkhovtsev AV, Korol AV, Solov’yov AV (2012) Formalism of collective excitations in fullerenes. Eur Phys J D 66:253ADSCrossRefGoogle Scholar
  73. 73.
    Varshalovich DA, Moskalev AN, Khersonskii VK (1988) Quantum theory of angular momentum. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  74. 74.
    Verkhovtsev AV, Korol AV, Solov’yov AV (2015) Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles. Phys Rev Lett 114:063401ADSCrossRefGoogle Scholar
  75. 75.
    Verkhovtsev AV, Korol AV, Solov’yov AV (2015) Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C 119:11000–11013CrossRefGoogle Scholar
  76. 76.
    Verkhovtsev A, McKinnon S, de Vera P, Surdutovich E, Guatelli S, Korol AV, Rosenfeld A, Solov’yov AV (2015) Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium. Eur Phys J D 69:116ADSCrossRefGoogle Scholar
  77. 77.
    Connerade J-P, Solov’yov AV (1996) Radiative electron capture by metallic clusters. J Phys B: At Mol Opt Phys 29:365–375ADSCrossRefGoogle Scholar
  78. 78.
    Gerchikov LG, Ipatov AN, Solov’yov AV (1998) Many-body treatment of the photon emission process in electron-clusters collisions. J Phys B: At Mol Opt Phys 31:2331–2341ADSCrossRefGoogle Scholar
  79. 79.
    Korol AV, Solov’yov AV (2014) Polarization Bremsstrahlung, Springer Series on Atomic, Optical, and Plasma Physics, vol 80. Springer, Berlin HeidelbergGoogle Scholar
  80. 80.
    Kubo R (1962) Electronic properties of metallic fine particles. I. J Phys Soc Jpn 17:975–986Google Scholar
  81. 81.
    Lushnikov AA, Simonov AJ (1974) Surface plasmons in small metal particles. Z Phys 270:17–24ADSCrossRefGoogle Scholar
  82. 82.
    Yannouleas C, Broglia RA (1992) Landau damping and wall dissipationin large metal clusters. Ann Phys 217:105–141ADSCrossRefGoogle Scholar
  83. 83.
    Yannouleas C (1998) Microscopic description of the surface dipole plasmon in large Na\(_N\) clusters \((950 \le N \le 12050)\). Phys Rev B 58:6748–6751ADSCrossRefGoogle Scholar
  84. 84.
    Bertsch GF, Bulgac A, Tomanek D, Wang Y (1992) Collective plasmon excitations in C\(_{60}\) clusters. Phys Rev Lett 67:2690–2693ADSCrossRefGoogle Scholar
  85. 85.
    Lushnikov AA, Simonov AJ (1975) Excitation of surface plasmons in metal particles by fast electrons and x rays. Z Phys B 21:357–362ADSCrossRefGoogle Scholar
  86. 86.
    Ipatov AN, Ivanov VK, Agap’ev BD, Eckardt W (1998) Exchange and polarization effects in elastic electron scattering by metallic clusters. J Phys B: At Mol Opt Phys 31:925–934ADSCrossRefGoogle Scholar
  87. 87.
    Descourt P, Farine M, Guet C (2000) Many-body approach of electron elastic scattering on sodium clusters. J Phys B: At Mol Opt Phys 33:4565–4574ADSCrossRefGoogle Scholar
  88. 88.
    Lezius M, Scheier P, Märk TD (1993) Free electron attachment to C\(_{60}\) and C\(_{70}\). Chem Phys Lett 203:232–236ADSCrossRefGoogle Scholar
  89. 89.
    Huang J, Carman HS Jr, Compton RN (1995) Low-energy electron attachment to C\(_{60}\). J Phys Chem 99:1719–1726CrossRefGoogle Scholar
  90. 90.
    Elhamidi O, Pommier J, Abouaf R (1997) Low-energy electron attachment to fullerenes C\(_{60}\) and C\(_{70}\) in the gas phase. J Phys B: At Mol Opt Phys 30:4633–4642ADSCrossRefGoogle Scholar
  91. 91.
    Ptasinska S et al (2006) Electron attachment to higher fullerenes and to Sc\(_3\)N@C\(_{80}\). J Phys Chem A 110:8451–8456CrossRefGoogle Scholar
  92. 92.
    Kasperovich V, Tikhonov G, Wong K, Brockhaus P, Kresin V (1999) Polarization forces in collisions between low-energy electrons and sodium clusters. Phys Rev A 60:3071–3075ADSCrossRefGoogle Scholar
  93. 93.
    Kresin V, Guet C (1999) Long-range polarization interactions of metal clusters. Philos Mag B 79:1401–1411ADSCrossRefGoogle Scholar
  94. 94.
    Sentürk S, Connerade JP, Burgess DD, Mason NJ (2000) Enhanced electron capture by metallic clusters. J Phys B: At Mol Opt Phys 33:2763–2774ADSCrossRefGoogle Scholar
  95. 95.
    Rabinovitch R, Xia C, Kresin VV (2008) Evaporative attachment of slow electrons to alkali-metal nanoclusters. Phys Rev A 77:063202ADSCrossRefGoogle Scholar
  96. 96.
    Rabinovitch R, Hansen K, Kresin VV (2011) Slow electron attachment as a probe of cluster evaporation processes. J Phys Chem A 115:6961–6972CrossRefGoogle Scholar
  97. 97.
    Connerade JP, Solov’yov AV (1996) Giant resonances in photon emission spectra of metal clusters. J Phys B: At Mol Opt Phys 29:3529–3547ADSCrossRefGoogle Scholar
  98. 98.
    Ipatov A, Connerade J-P, Gerchikov LG, Solov’yov AV (1998) Electron attachement to metallic clusters. J Phys B: At Mol Opt Phys 31:L27–L34ADSCrossRefGoogle Scholar
  99. 99.
    Connerade J-P, Gerchikov LG, Ipatov AN, Solov’yov AV (1999) Polarization effects in electron attachement to metallic clusters. J Phys B: At Mol Opt Phys 32:877–894ADSCrossRefGoogle Scholar
  100. 100.
    Hervieux P-A, Madjet ME, Benali H (2002) Capture of low-energy electrons by simple closed-shell metal clusters. Phys Rev A 65:023202ADSCrossRefGoogle Scholar
  101. 101.
    Massey HSW (1979) Atomic and molecular collisions. Taylor and Francis, LondonGoogle Scholar
  102. 102.
    Gerchikov LG, Solov’yov AV (1997) Photon emission in electron-cluster collision in the vicinity of plasmon resonance. Z Phys D 42:279–287ADSCrossRefGoogle Scholar
  103. 103.
    Amusia MYa, Korol AV (1994) On the continuous spectrum electromagnetic radiation in electron-fullerene collisions. Phys Lett A 186:230–234Google Scholar
  104. 104.
    Gerchikov LG, Ipatov AN, Solov’yov AV, Greiner W (2000) Non-adiabatic electron-ion coupling in dynamical jellium model for metal clusters. J Phys B: At Mol Opt Phys 33:4905–4926ADSCrossRefGoogle Scholar
  105. 105.
    Chernysheva LV, Gribakin GF, Ivanov VK, Kuchiev MYu (1988) Many-body calculation of negative ions using the Dyson equation. J Phys B: At Mol Opt Phys 21:L419–L425ADSCrossRefGoogle Scholar
  106. 106.
    Ellert Ch, Schmidt M, Schmitt M, Reiners Th, Haberland H (1995) Temperature dependence of the optical response of small, open shell sodium clusters. Phys Rev Lett 75:1731–1734ADSCrossRefGoogle Scholar
  107. 107.
    Gerchikov LG, Solov’yov AV, Greiner W (1999) Dynamical jellium model for metallic clusters. Int J Mod Phys E 8:289–298ADSCrossRefGoogle Scholar
  108. 108.
    Pacheco JM, Broglia RA (1989) Effect of surface fluctuations in the line shape of plasma resonances in small metal clusters. Phys Rev Lett 62:1400–1402ADSCrossRefGoogle Scholar
  109. 109.
    Bertsch GF, Tomanek D (1989) Thermal line broadening in small metal clusters. Phys Rev B 40:2749–2751ADSCrossRefGoogle Scholar
  110. 110.
    Penzar Z, Ekardt W, Rubio A (1990) Temperature effects on the optical absorption of jellium clusters. Phys Rev B 42:5040–5045ADSCrossRefGoogle Scholar
  111. 111.
    Montag B, Reinhard P-G, Meyer J (1994) The structure-averaged jellium model for metal clusters. Z Phys D 32:125–136ADSCrossRefGoogle Scholar
  112. 112.
    Montag B, Reinhard PG (1995) Width of the plasmon resonance in metal clusters. Phys Rev B 51:14686–14692ADSCrossRefGoogle Scholar
  113. 113.
    Lyalin AG, Semenov SK, Cherepkov NA, Solov’yov AV, Greiner W (2000) Hartree-Fock deformed jellium model for metal clusters. J Phys B: At Mol Opt Phys 33:3653–3664ADSCrossRefGoogle Scholar
  114. 114.
    Ekardt W (1985) Collective multipole excitations in small metal particles: critical angular momentum \(l^{\rm cr}\) for the existence of collective surface modes. Phys Rev B 32:1961–1970Google Scholar
  115. 115.
    Guet C, Johnson WR (1992) Dipole excitations of closed-shell alkali-metal clusters. Phys Rev B 45:11283–11287ADSCrossRefGoogle Scholar
  116. 116.
    Kharchenko VA, Ivanov VK, Ipatov AN, Zhizhin ML (1994) Size dependence of electronic structure and adiabatic type of collective vibration in small metal clusters. Phys Rev A 50:1459–1464ADSCrossRefGoogle Scholar
  117. 117.
    Wang Y, Lewenkopf C, Tomanek D, Bertsch G, Saito S (1993) Collective electronic excitations and their damping in small alkali clusters. Chem Phys Lett 205:521–528ADSCrossRefGoogle Scholar
  118. 118.
    Pacheco JM, Schöne W-D (1997) Shape phase transitions in the absorption spectra of atomic clusters. Phys Rev Lett 79:4986–4989ADSCrossRefGoogle Scholar
  119. 119.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000ADSCrossRefGoogle Scholar
  120. 120.
    Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at \(E = 50-30,000\) eV, \(Z = 1-92\). At Data Nucl Data Tables 54:181–342Google Scholar
  121. 121.
    de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Semiempirical model for the ion impact ionization of complex biological media. Phys Rev Lett 110:148104ADSCrossRefGoogle Scholar
  122. 122.
    LaVerne J (1989) Radical and molecular yields in the radiolysis of water with carbon ions. Radiat Phys Chem 34:135–143ADSGoogle Scholar
  123. 123.
    Yuan HK, Chen H, Tian CL, Kuang AL, Wang JZ (2014) Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters. J Chem Phys 140:154308ADSCrossRefGoogle Scholar
  124. 124.
    Schüler M, Berakdar J, Pavlyukh Y (2015) Disentangling multipole contributions to collective excitations in fullerenes. Phys Rev A 92:021403(R)ADSCrossRefGoogle Scholar
  125. 125.
    Biswas S, Tribedi LC (2015) Plasmon-mediated electron emission from the coronene molecule under fast ion impact. Phys Rev A 92:060701(R)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alexey Verkhovtsev
    • 1
    • 2
    Email author
  • Andrei V. Korol
    • 2
    • 3
  • Andrey V. Solov’yov
    • 4
    • 5
  1. 1.Instituto de Fisica FundamentalConsejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
  2. 2.MBN Research CenterFrankfurt am MainGermany
  3. 3.Department of PhysicsSt. Petersburg State Maritime Technical UniversitySt. PetersburgRussia
  4. 4.MBN Research Center at Frankfurter Innovationszentrum BiotechnologieFrankfurt am MainGermany
  5. 5.A.F. Ioffe Physical-Technical InstituteSaint PetersburgRussia

Personalised recommendations