Advertisement

New Research in Ionizing Radiation and Nanoparticles: The ARGENT Project

  • M. Bolsa FerruzEmail author
  • V. Ivošev
  • K. Haume
  • L. Ellis-Gibbings
  • A. Traore
  • V. Thakare
  • S. Rosa
  • Pablo de Vera
  • V.-L. Tran
  • A. Mika
  • D. Boscolo
  • S. Grellet
  • Alexey Verkhovtsev
  • Bernd A. Huber
  • K. T. Butterworth
  • K. M. Prise
  • F. J. Currell
  • Nigel J. Mason
  • J. Golding
  • E. Scifoni
  • Gustavo García
  • F. Boschetti
  • F. Lux
  • O. Tillement
  • C. Louis
  • K. Stokbro
  • Andrey V. Solov’yov
  • S. Lacombe
Chapter

Abstract

This chapter gives an overview of “ARGENT ” (“Advanced Radiotherapy , Generated by Exploiting Nanoprocesses and Technologies”) , an ongoing international Initial Training Network project , supported by the European Commission . The project , bringing together world-leading researchers in physics, medical physics, chemistry, and biology, aims to train 13 Early Stage Researchers (ESRs) whose research activities are linked to understanding and exploiting the nanoscale processes that drive physical, chemical, and biological effects induced by ionizing radiation in the presence of radiosensitizing nanoparticles . This research is at the forefront of current practices and involves many experts from the respective scientific disciplines. In this chapter, we overview research topics covered by ARGENT and briefly describe the research projects of each ESR.

Keywords

Shock Wave Inductively Couple Plasma Mass Spectrometry Linear Energy Transfer Electron Energy Loss Spectroscopy Relative Biological Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge financial support from the European Union’s FP7 People Program (Marie Curie Actions) within the Initial Training Network No. 608163 “ARGENT”.

References

  1. 1.
  2. 2.
    Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760ADSCrossRefGoogle Scholar
  3. 3.
    Porcel E et al (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:085103ADSCrossRefGoogle Scholar
  4. 4.
    McMahon SJ et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18ADSCrossRefGoogle Scholar
  5. 5.
    Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985CrossRefGoogle Scholar
  6. 6.
    Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2:330–342Google Scholar
  7. 7.
    Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599CrossRefGoogle Scholar
  8. 8.
    Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111:11622–11625CrossRefGoogle Scholar
  9. 9.
    Liu C-J et al (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931–945CrossRefGoogle Scholar
  10. 10.
    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315CrossRefGoogle Scholar
  11. 11.
    Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C (2010) Enhancement of radiation effect by heavy elements. Mutat Res 704:123–131CrossRefGoogle Scholar
  12. 12.
    Usami N et al (2008) Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol 84:603–611CrossRefGoogle Scholar
  13. 13.
    Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S (2011) Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. J Phys Conf Ser 261:012004ADSCrossRefGoogle Scholar
  14. 14.
    Asharani PV, Wu, YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102Google Scholar
  15. 15.
    Porcel E et al (2014) Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed Nanotechnol 10:1601–1608CrossRefGoogle Scholar
  16. 16.
    Alric C et al (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915CrossRefGoogle Scholar
  17. 17.
    Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40CrossRefGoogle Scholar
  18. 18.
    Alric C et al (2013) The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale 5:5930–5939ADSCrossRefGoogle Scholar
  19. 19.
    Sancey L et al (2014) The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 87:20140134CrossRefGoogle Scholar
  20. 20.
    Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefGoogle Scholar
  21. 21.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668ADSCrossRefGoogle Scholar
  22. 22.
    Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424CrossRefGoogle Scholar
  23. 23.
    Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915ADSCrossRefGoogle Scholar
  24. 24.
    Zhu M, Nie G, Meng H, Xia T (2012) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631CrossRefGoogle Scholar
  25. 25.
    Lin Y, McMahon SJ, Paganetti H, Schuemann J (2015) Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys Med Biol 60:4149–4168CrossRefGoogle Scholar
  26. 26.
    Beddoes CM, Case CP, Briscoe WH (2015) Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Col Interface Sci 218:48–68CrossRefGoogle Scholar
  27. 27.
    Hirsch V, Salaklang J, Rothen-Rutishauser B, Petri-Fink A (2013) Influence of serum supplemented cell culture medium on colloidal stability of polymer coated iron oxide and polystyrene nanoparticles with impact on cell interactions in vitro. IEEE Trans Magn 49:402–407ADSCrossRefGoogle Scholar
  28. 28.
    Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24:400–413Google Scholar
  29. 29.
    Kalay S, Blanchet C, Culha M (2014) Linear assembly and 3D networks of peptide modified gold nanoparticles. Turk J Chem 38:686–700CrossRefGoogle Scholar
  30. 30.
    da Rocha EL, Caramori GF, Rambo CR (2013) Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. Phys Chem Chem Phys 15:2282–2290CrossRefGoogle Scholar
  31. 31.
    Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9:1225–1243CrossRefGoogle Scholar
  32. 32.
    Ranganathan R et al (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed 7:1043–1060Google Scholar
  33. 33.
    Illes E et al (2014) PEGylation of surfacted magnetite core-shell nanoparticles for biomedical application. Colloid Surf A 460:429–440CrossRefGoogle Scholar
  34. 34.
    Thierry B, Griesser HJ (2012) Dense PEG layers for efficient immunotargeting of nanoparticles to cancer cells. J Mater Chem 22:8810–8819CrossRefGoogle Scholar
  35. 35.
    Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419CrossRefGoogle Scholar
  36. 36.
    Chithrani BD, Stewart J, Allen C, Jaffray DA (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomed Nanotechnol 5:118–127CrossRefGoogle Scholar
  37. 37.
    Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26CrossRefGoogle Scholar
  38. 38.
    Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Controlled Release 136:155–160CrossRefGoogle Scholar
  39. 39.
    Calvaresi EC, Hergenrother PJ (2013) Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 4:2319–2333CrossRefGoogle Scholar
  40. 40.
    Gromnicova R et al (2013) Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS ONE 8:e81043ADSCrossRefGoogle Scholar
  41. 41.
    Hu C, Niestroj M, Yuan D, Chang S, Chen J (2015) Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomed 10:2065–2077Google Scholar
  42. 42.
    Dai Q, Walkey C, Chan WC (2014) Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed 53:5093–5096CrossRefGoogle Scholar
  43. 43.
    Miladi I et al (2014) The in vivo radiosensitizing effect of gold nanoparticles based MRI contrast agents. Small 10:1116–1124CrossRefGoogle Scholar
  44. 44.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665CrossRefGoogle Scholar
  45. 45.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  46. 46.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22ADSGoogle Scholar
  47. 47.
    Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994:801–802CrossRefGoogle Scholar
  48. 48.
    Debouttiere P-J et al (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16:2330–2339CrossRefGoogle Scholar
  49. 49.
    Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043CrossRefGoogle Scholar
  50. 50.
    Ahmadi T, Wang Z, Green T, Henglein A, El-Sayed M (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926ADSCrossRefGoogle Scholar
  51. 51.
    Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 38:160–175Google Scholar
  52. 52.
    Miladi I et al (2013) Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. J Biomater Appl 28:385–394CrossRefGoogle Scholar
  53. 53.
    Faucher L, Tremblay M, Lagueux J, Gossuin Y, Fortin M-A (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4:4506–4515CrossRefGoogle Scholar
  54. 54.
    Louis C et al (2005) Nanosized hybrid particles with double luminescence for biological labeling. Chem Mater 17:1673–1682CrossRefGoogle Scholar
  55. 55.
    Torchilin VP, Papisov MI (1994) Why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 4:725–739CrossRefGoogle Scholar
  56. 56.
    Nicol JR, Dixon D, Coulter JA (2015) Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine 10:1315–1326CrossRefGoogle Scholar
  57. 57.
    Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol J-P, Reilly RM (2013) Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 137:81–91CrossRefGoogle Scholar
  58. 58.
    Le Duc G et al (2011) Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 5:9566–9574CrossRefGoogle Scholar
  59. 59.
    Fang J et al (2014) Manipulating the surface coating of ultra-small Gd\(_2\)O\(_3\) nanoparticles for improved T1-weighted MR imaging. Biomaterials 35:1636–1642CrossRefGoogle Scholar
  60. 60.
    Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol 12:81–103CrossRefGoogle Scholar
  61. 61.
    Mignot A et al (2013) A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem Eur J 19:6122–6136CrossRefGoogle Scholar
  62. 62.
    Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3:579–592CrossRefGoogle Scholar
  63. 63.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  64. 64.
    Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U (2015) Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core-shell silica nanoparticle growth in water. Chem Mater 27:4119–4133CrossRefGoogle Scholar
  65. 65.
    Chi F, Guan B, Yang B, Liu Y, Huo Q (2010) Terminating effects of organosilane in the formation of silica cross-linked micellar core-shell nanoparticles. Langmuir 26:11421–11426CrossRefGoogle Scholar
  66. 66.
    Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220CrossRefGoogle Scholar
  67. 67.
    Patterson JP, Robin MP, Chassenieux C, Colombani O, O’Reilly RK (2014) The analysis of solution self-assembled polymeric nanomaterials. Chem Soc Rev 43:2412–2425CrossRefGoogle Scholar
  68. 68.
    Zetasizer nano series user manual (2004)Google Scholar
  69. 69.
    Lehman SE, Tataurova Y, Mueller PS, Mariappan SVS, Larsen SC (2014) Ligand characterization of covalently functionalized mesoporous silica nanoparticles: an NMR toolbox approach. J Phys Chem C 118:29943–29951CrossRefGoogle Scholar
  70. 70.
    Price WS (2005) Applications of pulsed gradient spin-echo NMR diffusion measurements to solution dynamics and organization. Diffus Fundam 2:112Google Scholar
  71. 71.
    Tomaszewska E et al (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:313081CrossRefGoogle Scholar
  72. 72.
    Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50CrossRefGoogle Scholar
  73. 73.
    Morlieras J et al (2013) Development of gadolinium based nanoparticles having an affinity towards melanin. Nanoscale 5:1603–1615ADSCrossRefGoogle Scholar
  74. 74.
    Morlieras J et al (2013) Functionalization of small rigid platforms with cyclic RGD peptides for targeting tumors overexpressing \(\alpha _{{\rm {v}}}\beta _3\)-integrins. Bioconjug Chem 24:1584–1597Google Scholar
  75. 75.
    Truillet C, Lux F, Tillement O, Dugourd P, Antoine R (2013) Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based silica nanoparticles. Anal Chem 85:10440–10447CrossRefGoogle Scholar
  76. 76.
    Kotb S et al (2016) Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 6:418–427CrossRefGoogle Scholar
  77. 77.
    Merbach A, Helm L, Toth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. WileyGoogle Scholar
  78. 78.
    Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782CrossRefGoogle Scholar
  79. 79.
    Brigger I et al (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  80. 80.
    Toulany M et al (2014) Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother Oncol 111:228–236CrossRefGoogle Scholar
  81. 81.
    Liang K et al (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2:1113–1120Google Scholar
  82. 82.
    Hermanson GT (2013) Bioconjugate techniques. Academic PressGoogle Scholar
  83. 83.
    Conde J et al (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48CrossRefGoogle Scholar
  84. 84.
    Ghosh SS et al (1990) Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug Chem 1:71–76CrossRefGoogle Scholar
  85. 85.
    Lutz J-F, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azidealkyne “click” chemistry. Adv Drug Deliv Rev 60:958–970Google Scholar
  86. 86.
    Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University PressGoogle Scholar
  87. 87.
    Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, San DiegozbMATHGoogle Scholar
  88. 88.
    MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  89. 89.
    Xiao F et al (2011) On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 22:465101ADSCrossRefGoogle Scholar
  90. 90.
    Verkhovtsev AV, Korol AV, Solov’yov AV (2015) Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles. Phys Rev Lett 114:063401ADSCrossRefGoogle Scholar
  91. 91.
    Hohenester U, Trügler A (2012) MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun 183:370–381ADSCrossRefGoogle Scholar
  92. 92.
    Palik ED (1998) Handbook of optical constants of solids. Academic PressGoogle Scholar
  93. 93.
    Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333CrossRefGoogle Scholar
  94. 94.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. R Soc Chem 38:1759–1782CrossRefGoogle Scholar
  95. 95.
    Bianchi A et al (2014) Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI. Magn Reson Mater Phys Biol Med 27:303–316CrossRefGoogle Scholar
  96. 96.
    Pan Y et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076CrossRefGoogle Scholar
  97. 97.
    Pan Y et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949CrossRefGoogle Scholar
  98. 98.
    Nidome T et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347CrossRefGoogle Scholar
  99. 99.
    Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomed Nanotechnol 3:111–119CrossRefGoogle Scholar
  100. 100.
    Holmes P, Tuckett C (2000) Airborne particles: exposure in the home and health effects. MRC Institute for Environment and Health, LeicesterGoogle Scholar
  101. 101.
    Wallace BA, Janes RW (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 5:567–571CrossRefGoogle Scholar
  102. 102.
    Wallace BA (2000) Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. J Synchrotron Radiat 7:289–295CrossRefGoogle Scholar
  103. 103.
  104. 104.
  105. 105.
    American Cancer Society. http://www.cancer.org/cancer/index
  106. 106.
    Wingfield C (2002) Skin cancer: an overview of assessment and management. Primary Health Care 22:28–37CrossRefGoogle Scholar
  107. 107.
    Coulter JA et al (2012) Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomed 7:2673–2685CrossRefGoogle Scholar
  108. 108.
    Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2000) Molecular cell biology. W.H. Freeman, New YorkGoogle Scholar
  109. 109.
    Shukla R et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654CrossRefGoogle Scholar
  110. 110.
    Brust M et al (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Commun 1995:1655–1656CrossRefGoogle Scholar
  111. 111.
    Chithrani BD et al (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550ADSCrossRefGoogle Scholar
  112. 112.
    Ivanov AI (2014) Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets. Methods Mol Biol 1174:3–18CrossRefGoogle Scholar
  113. 113.
    Gao H et al (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534ADSCrossRefGoogle Scholar
  114. 114.
    Rogers DWO (1991) The role of Monte Carlo simulation of electron transport in radiation dosimetry. Appl Radiat Isot 42:965–974CrossRefGoogle Scholar
  115. 115.
    Paganetti H et al (2004) Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys 31:2107–2118CrossRefGoogle Scholar
  116. 116.
    Friedland W et al (1998) Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Radiat Res 150:170–182CrossRefGoogle Scholar
  117. 117.
    Nikjoo H et al (2002) Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV). Radiat Prot Dosim 99:77–80CrossRefGoogle Scholar
  118. 118.
    Pimblott SM, Mozumder A (1991) Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis. J Phys Chem 95:7291–7300CrossRefGoogle Scholar
  119. 119.
    Champion C et al (2012) EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Int J Radiat Biol 88:54–61CrossRefGoogle Scholar
  120. 120.
    Incerti S et al (2010) Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37:4692–4708CrossRefGoogle Scholar
  121. 121.
    Muñoz A, Pérez JM, García G, Blanco F (2005) An approach to Monte Carlo simulation of low-energy electron and photon interactions in air. Nucl Instr Meth A 536:176–188ADSCrossRefGoogle Scholar
  122. 122.
    Krämer M, Durante M (2010) Ion beam transport calculations and treatment plans in particle therapy. Eur Phys J D 60:195–202ADSCrossRefGoogle Scholar
  123. 123.
    García Gomez-Tejedor G, Fuss MC (eds) (2012) Radiation damage in biomolecular systems. SpringerGoogle Scholar
  124. 124.
    Nikjoo H et al (2012) Interaction of radiation with matter, CRC PressGoogle Scholar
  125. 125.
    Muñoz A et al (2008) Single electron tracks in water vapour for energies below 100 eV. Int J Mass Spectrom 277:175–179CrossRefGoogle Scholar
  126. 126.
    Wälzlein C et al (2014) Low energy electron transport in non-uniform media. Nucl Instr Meth B 320:75–82ADSCrossRefGoogle Scholar
  127. 127.
    Waelzlein C et al (2014) Simulation of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol 59:1441–1458CrossRefGoogle Scholar
  128. 128.
    Surdutovich E, Solov’yov AV (2014) Multiscale approach to the physics of radiation damage with ions. Eur Phys J D 68:353ADSCrossRefGoogle Scholar
  129. 129.
    de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Semiempirical model for the ion impact ionization of complex biological media. Phys Rev Lett 110:148104ADSCrossRefGoogle Scholar
  130. 130.
    de Vera P, Abril I, Garcia-Molina R, Solov’yov AV (2013) Ionization of biomolecular targets by ion impact: input data for radiobiological applications. J Phys Conf Ser 438:012015ADSCrossRefGoogle Scholar
  131. 131.
    Surdutovich E, Solov’yov AV (2015) Transport of secondary electrons and reactive species in ion tracks. Eur Phys J D 69:193ADSCrossRefGoogle Scholar
  132. 132.
    Toulemonde M, Surdutovich E, Solov’yov AV (2009) Temperature and pressure spikes in ion-beam cancer therapy. Phys Rev E 80:031913ADSCrossRefGoogle Scholar
  133. 133.
    Surdutovich E, Solov’yov AV (2010) Shock wave initiated by an ion passing through liquid water. Phys Rev E 82:051915ADSCrossRefGoogle Scholar
  134. 134.
    Surdutovich E, Yakubovich AV, Solov’yov AV (2013) DNA damage due to thermomechanical effects caused by heavy ions propagating in tissue. Nucl Instr Meth B 314:63–65ADSCrossRefGoogle Scholar
  135. 135.
    de Vera P, Currell FJ, Mason NJ, Solov’yov AV (2016) Molecular dynamics study of accelerated ion-induced shock waves in biological media. Eur Phys J D 70:183Google Scholar
  136. 136.
    Surdutovich E, Yakubovich AV, Solov’yov AV (2013) Biodamage via shock waves initiated by irradiation with ions. Sci Rep 3:1289ADSCrossRefGoogle Scholar
  137. 137.
    Yakubovich AV, Surdutovich E, Solov’yov AV (2012) Thermomechanical damage of nucleosome by the shock wave initiated by ion passing through liquid water. Nucl Instr Meth B 279:135–139ADSCrossRefGoogle Scholar
  138. 138.
    Yakubovich AV, Surdutovich E, Solov’yov AV (2012) Damage of DNA backbone by nanoscale shock waves. J Phys Conf Ser 373:012014ADSCrossRefGoogle Scholar
  139. 139.
    Roots R, Okada S (1972) Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med 21:329–342CrossRefGoogle Scholar
  140. 140.
    Hirayama R et al (2009) Contributions of direct and indirect actions in cell killing by high-LET radiations. Radiat Res 171:212–218CrossRefGoogle Scholar
  141. 141.
    LaVerne JA (2000) Track effects of heavy ions in liquid water. Radiat Res 153:487–496CrossRefGoogle Scholar
  142. 142.
    Plante I, Cucinotta F (2008) Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New J Phys 10:125020CrossRefGoogle Scholar
  143. 143.
    Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of DNA damage after proton irradiation. Radiat Res 159:401–410CrossRefGoogle Scholar
  144. 144.
    Karamitros M et al (2014) Diffusion-controlled reactions modeling in Geant4-DNA. J Comput Phys 274:841–882ADSCrossRefGoogle Scholar
  145. 145.
    Gervais B, Beuve M, Olivera GH, Galassi ME (2006) Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem 75:493–513ADSCrossRefGoogle Scholar
  146. 146.
    Von Sonntag C (2007) Free-radical-induced DNA damage as approached by quantum-mechanical and Monte Carlo calculations: an overview from the standpoint of an experimentalist. In: Sabin JR, Brändas E (eds) Advances in quantum chemistry, vol 52. Academic Press, pp. 5–20Google Scholar
  147. 147.
    Hirayama R et al (2013) OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect. Radiat Res 180:514–523CrossRefGoogle Scholar
  148. 148.
    Sicard-Roselli C et al (2014) A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small 10:3338–3346CrossRefGoogle Scholar
  149. 149.
    Paudel N, Shvydka D, Parsai EI (2015) Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose deposition due to the presence of high Z materials during irradiation of aqueous media. Int J Med Phys Clin Eng Radiat Oncol 4:300–307CrossRefGoogle Scholar
  150. 150.
    Zhang X-D et al (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173CrossRefGoogle Scholar
  151. 151.
    Sanche L (2008) Low energy electron damage to DNA. In: Shukla M, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids, vol 5. Springer, Netherlands, pp 531–575Google Scholar
  152. 152.
    Sanche L (2005) Low energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390ADSCrossRefGoogle Scholar
  153. 153.
    Sanche L (2009) Biological chemistry: beyond radical thinking. Nature 461:358–359ADSCrossRefGoogle Scholar
  154. 154.
    Lu Q-B (2010) Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mutat Res 704:190–1999ADSCrossRefGoogle Scholar
  155. 155.
    Fuss MC et al (2014) Current prospects on low energy particle track simulation for biomedical applications. Appl Radiat Isot 83B:159–164CrossRefGoogle Scholar
  156. 156.
    Elsässer T, Cunrath R, Krämer M, Scholz M (2008) Impact of track structure calculations on biological treatment planning in ion radiotherapy. New J Phys 10:075005CrossRefGoogle Scholar
  157. 157.
    Cobut V et al (1998) Monte Carlo simulation of fast electron and proton tracks in liquid water—I. Physical and physicochemical aspects. Radiat Phys Chem 51:229–243ADSCrossRefGoogle Scholar
  158. 158.
    Tennyson J (2010) Electron-molecule collision calculations using the R-matrix method. Phys Rep 491:29–76ADSCrossRefGoogle Scholar
  159. 159.
    Blanco F, Garcia G (2015) Interference effects in the electron and positron scattering from molecules at intermediate and high energies. Chem Phys Lett 635:321–327CrossRefGoogle Scholar
  160. 160.
    Pimblott SM, Laverne JA (2007) Production of low-energy electrons by ionizing radiation. Radiat Phys Chem 76:1244–1247ADSCrossRefGoogle Scholar
  161. 161.
    Garrett WR (1975) Molecular scattering: convergence of close-coupling expansions in the presence of many open channels. Phys Rev A 11:1297–1302ADSCrossRefGoogle Scholar
  162. 162.
    Blanco F, Ellis-Gibbings L, Garcia G (2016) Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules. Chem Phys Lett 645:71–75ADSCrossRefGoogle Scholar
  163. 163.
    Massey HSW, Burhop EHS, Gilbody HB (1970) Electronic and ionic impact phenomena, 2nd edn. In: Electron collisions with molecules and photo-ionization, vol 2. American Association for the Advancement of ScienceGoogle Scholar
  164. 164.
    Blanco F, Garcia G (2003) Improvements on the quasifree absorption model for electron scattering. Phys Rev A 67:022701ADSCrossRefGoogle Scholar
  165. 165.
    Blanco F, Garcia G (2004) Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys Lett A 330:230–237ADSCrossRefGoogle Scholar
  166. 166.
    Colmenares R, Sanz AG, Fuss MC, Blanco F, Garcia G (2014) Stopping power for electrons in pyrimidine in the energy range 20–3000 eV. Appl Radiat Isot 83B:91–94CrossRefGoogle Scholar
  167. 167.
    Oller JC, Ellis-Gibbings L, da Silva FF, Limao-Vieira P, Garcia G (2015) Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets. EPJ Tech Instr 2:13CrossRefGoogle Scholar
  168. 168.
    Jaffke T, Meinke M, Hashemi R, Christophorou LG, Illenberger E (1992) Dissociative electron attachment to singlet oxygen. Chem Phys Lett 193:62–68ADSCrossRefGoogle Scholar
  169. 169.
    Belic DS, Hall RI (1981) Dissociative electron attachment to metastable oxygen (\(a^1 \Delta g\)). J Phys B At Mol Phys 14:365–373ADSCrossRefGoogle Scholar
  170. 170.
    Hayashi S, Kuchitsu K (1976) Elastic scattering of electrons by molecules at intermediate energies. Calculation of double scattering effects in N\(_2\) and P\(_4\). Chem Phys Lett 41:575–579ADSCrossRefGoogle Scholar
  171. 171.
    Almeida D et al (2012) Mass spectrometry of anions and cations produced in \(1-4\) keV H\(^-\), O\(^-\), and OH\(^-\) collisions with nitromethane, water, ethanol, and methanol. Int J Mass Spectrom 311:7–16CrossRefGoogle Scholar
  172. 172.
    Štefančíková L et al (2014) Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol 5:6CrossRefGoogle Scholar
  173. 173.
    Harrison KG, Lucas MW (1970) Secondary electron energy spectra from foils under light-ion bombardment. Phys Lett A 33:142ADSCrossRefGoogle Scholar
  174. 174.
    Casta R, Champeaux J-P, Sence M, Moretto-Capelle P, Cafarelli P (2015) Comparison between gold nanoparticle and gold plane electron emissions: a way to identify secondary electron emission. Phys Med Biol 60:9095–9106CrossRefGoogle Scholar
  175. 175.
    Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266–3271ADSCrossRefGoogle Scholar
  176. 176.
    Kamalou O (2008) PhD Thesis, University of CaenGoogle Scholar
  177. 177.
    Alpen EL (1998) Radiation biophysics. Academic PressGoogle Scholar
  178. 178.
    Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425ADSCrossRefGoogle Scholar
  179. 179.
    Verkhovtsev AV, Korol AV, Solovyov AV (2015) Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C 119:11000–11013CrossRefGoogle Scholar
  180. 180.
    Usami N, Kobayashi K, Furusawa Y, Frohlich H, Lacombe S, Le Sech C (2007) Irradiation of DNA loaded with platinum containing molecules by fast atomic ions C\(^{6+}\) and Fe\(^{26+}\). Int J Radiat Biol 83:569–576CrossRefGoogle Scholar
  181. 181.
    Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838ADSCrossRefGoogle Scholar
  182. 182.
    Misawa M, Takahashi J (2011) Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomed Nanotechnol 7:604–614CrossRefGoogle Scholar
  183. 183.
    Jain S et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539CrossRefGoogle Scholar
  184. 184.
    Chithrani DB et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728CrossRefGoogle Scholar
  185. 185.
    McMahon SJ, Mendenhall M, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651CrossRefGoogle Scholar
  186. 186.
    Ando K, Kase Y (2009) Biological characteristics of carbon-ion therapy. Int J Radiat Biol 85:715–728CrossRefGoogle Scholar
  187. 187.
    Furusawa Y et al (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res 154:485–496CrossRefGoogle Scholar
  188. 188.
    Hirayama R, Furusawa Y, Fukawa T, Ando K (2005) Repair kinetics of DNA-DSB induced by X-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res 46:325–332CrossRefGoogle Scholar
  189. 189.
    Nakano T et al (2006) Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res 12:2185–2190CrossRefGoogle Scholar
  190. 190.
    Combs SE et al (2012) PhaseI/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial. BMC Cancer 12:137CrossRefGoogle Scholar
  191. 191.
    Hirayama R et al (2013) Evaluation of SCCVII tumor cell survival in clamped and non-clamped solidtumors exposed to carbon-ion beams in comparison to X-rays. Mutat Res 756:146–151CrossRefGoogle Scholar
  192. 192.
    Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S (2015) DNA damage foci: meaning and significance. Environ Mol Mutagen 56:491–504CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M. Bolsa Ferruz
    • 1
    Email author
  • V. Ivošev
    • 1
  • K. Haume
    • 2
    • 3
  • L. Ellis-Gibbings
    • 6
  • A. Traore
    • 6
  • V. Thakare
    • 6
    • 7
    • 8
  • S. Rosa
    • 9
  • Pablo de Vera
    • 2
    • 3
    • 10
  • V.-L. Tran
    • 11
    • 12
  • A. Mika
    • 13
  • D. Boscolo
    • 14
  • S. Grellet
    • 15
  • Alexey Verkhovtsev
    • 3
    • 6
  • Bernd A. Huber
    • 13
  • K. T. Butterworth
    • 9
  • K. M. Prise
    • 9
  • F. J. Currell
    • 10
  • Nigel J. Mason
    • 2
  • J. Golding
    • 15
  • E. Scifoni
    • 14
  • Gustavo García
    • 6
  • F. Boschetti
    • 7
  • F. Lux
    • 11
  • O. Tillement
    • 11
  • C. Louis
    • 12
  • K. Stokbro
    • 16
  • Andrey V. Solov’yov
    • 4
    • 5
  • S. Lacombe
    • 1
  1. 1.Institut des Sciences Moléculaires d’Orsay (ISMO)CNRS, Univ. Paris-Sud, Université Paris-SaclayOrsay CedexFrance
  2. 2.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  3. 3.MBN Research CenterFrankfurt am MainGermany
  4. 4.MBN Research Center at Frankfurter Innovationszentrum BiotechnologieFrankfurt am MainGermany
  5. 5.A.F. Ioffe Physical-Technical InstituteSaint PetersburgRussia
  6. 6.Instituto de Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain
  7. 7.CheMatechDijonFrance
  8. 8.Institute of Molecular ChemistryUniversity of BourgogneDijonFrance
  9. 9.Centre for Cancer Research and Cell BiologyQueen’s University BelfastBelfastUK
  10. 10.School of Mathematics and PhysicsQueen’s University BelfastBelfastUK
  11. 11.Team FENNEC, Institut Lumière Matière, UMR5306Université Claude Bernard Lyon1-CNRS, Université de LyonVilleurbanne CedexFrance
  12. 12.Nano-H S.A.SSaint-Quentin-FallavierFrance
  13. 13.Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP)Unité Mixte CEA-CNRS-EnsiCaen-Université de Caen Basse-NormandieCaenFrance
  14. 14.Biophysics DepartmentGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  15. 15.Department of Life, Health and Chemical SciencesThe Open UniversityMilton KeynesUK
  16. 16.QuantumWise A/SCopenhagenDenmark

Personalised recommendations