Advertisement

Embryo Culture and Phenotype of the Offspring

  • Arne Sunde
Chapter

Abstract

Children born after assisted reproduction technology (ART) are in general born earlier and have lower birth weight and slightly higher malformation and morbidity rate compared to children born after natural conception. ART is also associated with cardiovascular remodelling, changes in insulin sensitivity and blood lipids, fat distributions, bone length and earlier entry into puberty.

The reason for this is multifactorial; maternal and paternal factors such as infertility, lifestyle and obesity contribute as well as treatment-related factors like ovarian stimulation and in vitro fertilization and in vitro embryo culture.

A change in the epigenome in the early embryo is a likely mediator of the treatment-related changes in the phenotype of the offspring. Culture conditions, cryopreservation and different culture media have been shown to influence the epigenome of embryos, placenta and children born.

A controversial issue has been whether different embryo culture media could have different effects on the growth trajectory of the foetus and the birth weight of the child. Different culture media will induce different expression profiles in human embryos and embryonic stem cells. It is still unclear whether this difference in the embryonic epigenome is related the later growth of the foetus. Concerning the birth weight, most, but not all, properly designed prospective randomized studies have demonstrated an effect of the embryo culture media.

It is reasonably evident that ART including in vitro fertilization and embryo culture is related to changes in the phenotype of the offspring. Some of these changes are associated with the long-term health and morbidity but are far too early to make any firm predictions concerning the long-term health profile of ART children.

Keywords

Embryo culture Phenotype Offspring Assisted reproduction ART In vitro fertilization 

References

  1. 1.
    Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease. Br J Prevent Soc Med. 1977;31:91–5.Google Scholar
  2. 2.
    Forsdahl A. Living conditions in childhood and subsequent development of risk factors for arteriosclerotic heart disease. J Epid Comm Health. 1978;32:34–7.CrossRefGoogle Scholar
  3. 3.
    Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7.CrossRefGoogle Scholar
  4. 4.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Huang C, Li Z, Wang M, Martorell R. Early life exposure to the 1959-1961 Chinese famine has long-term health consequences. J Nutr. 2010;140:1874–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82:485–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Roseboom TJ, van der Meulen JHP, Ravelli ACJ, Osmond C, Barker DJP, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195–202.PubMedGoogle Scholar
  9. 9.
    Watkins AJ, Platt D, Papenbrock T, Wilkins A, Eckert JJ, Kwong WY, Osmond C, Hanson M, Fleming TP. Mouse embryo culture induces changes in postnatal phenotype including raised systolic blood pressure. Proc Natl Acad Sci U S A. 2007;104:5449–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kwong WY, Miller DJ, Ursell E, Wild AE, Wilkins AP, Osmond C, Anthony FW, Fleming TP. Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction. 2006;132:265–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Feuer SK, Camarano L, Rinaudo PF. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies. Mol Hum Reprod. 2013;19:189–204.PubMedCrossRefGoogle Scholar
  12. 12.
    Bygren L, Tinghög P, Carstensen J, Edvinsson S, Kaati G, Pembrey ME, Sjöström M. Change in paternal grandmothers’early food supply influence cardiovascular mortality of the female grandchildren. BMC Genet. 2014;15:1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Calle A, Fernandez-Gonzalez R, Ramos-Ibeas P, Laguna-Barraza R, Perez-Cerezales S, Bermejo-Alvarez P, Ramirez MA, Gutierrez-Adan A. Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology. 2012;77:785–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Calle A, Miranda A, Fernandez-Gonzalez R, Pericuesta E, Laguna R, Gutierrez-Adan A. Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol Reprod. 2012;87:34.PubMedCrossRefGoogle Scholar
  15. 15.
    Frias AE, Grove KL. Obesity: a transgenerational problem linked to nutrition during pregnancy. Semin Reprod Med. 2012;30:472–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet EJHG. 2002;10:682–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115:1243–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hiendleder S, Wirtz M, Mund C, Klempt M, Reichenbach HD, Stojkovic M, Weppert M, Wenigerkind H, Elmlinger M, Lyko F, et al. Tissue-specific effects of in vitro fertilization procedures on genomic cytosine methylation levels in overgrown and normal sized bovine fetuses. Biol Reprod. 2006;75:17–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Young L, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Briadbent PJ, Robinson JJ, Wilmut I, Sinclair KD. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27:153–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Young L, Sinclair K, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod. 1998;3:155–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Bowman PM, McLaren A. Viability and growth of mouse embryos after in vitro culture and fusion. J Embryol Exp Morph. 1970;23:693–704.PubMedGoogle Scholar
  22. 22.
    Market-Velker BA, Fernandes AD, Mann MR. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod. 2010;83:938–50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ecker DJ, Stein P, Xu Z, Williams CJ, Kopf GS, Bilker WB, Abel T, Schultz RM. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci U S A. 2004;101:1595–600.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Fernandez-Gonzalez R, Moreira P, Bilbao A, Jimenez A, Perez-Crespo M, Ramirez MA, Rodriguez De Fonseca F, Pintado B, Gutierrez-Adan A. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A. 2004;101:5880–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Albertini D, Evers J, Geraedts J, Gianaroli L, Sharpe R, Sinclair K, Sunde A, Van Steirteghem A. Birth defects and congenital health risks in children conceived through assisted reproduction technology (ART): a meeting report. J Assist Reprod Genet. 2014;31:947–58.CrossRefGoogle Scholar
  26. 26.
    Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment: Part I – General health outcomes. Hum Reprod Update. 2013;19:232–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment. Part II – Mental health and development outcomes. Hum Reprod Update. 2013;19:244–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328:261.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:485–503.PubMedCrossRefGoogle Scholar
  30. 30.
    Pinborg A, Henningsen AK, Malchau SS, Loft A. Congenital anomalies after assisted reproductive technology. Fertil Steril. 2013;99:327–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, Soderstrom-Anttila V, Nygren KG, Hazekamp J, Bergh C. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19:87–104.PubMedCrossRefGoogle Scholar
  32. 32.
    Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Gunnel D, Vatten LJ. Effects of technology or maternal factors on perinatal outcome of assisted reproduction: a population-based cohort study. Lancet. 2008;372:737–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180:1–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Yeung EH, Sundaram R, Bell EM, Druschel C, Kus C, Xie Y, Buck Louis GM. Infertility treatment and children’s longitudinal growth between birth and 3 years of age. Hum Reprod. 2016;31:1621–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Ceelen M, van Weissenbruch MM, Roos JC, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab. 2007;92:3417–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93:1682–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, de Marchi SF, Nicod P, Germond M, Allemann Y, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125:1890–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Valenzuela-Alcaraz B, Crispi F, Bijnens B, Cruz-Lemini M, Creus M, Sitges M, Bartrons J, Civico S, Balasch J, Gratacos E. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation. 2013;128:1442–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou J, Liu H, Gu HT, Cui YG, Zhao NN, Chen J, Gao L, Zhang Y, Liu JY. Association of cardiac development with assisted reproductive technology in childhood: a prospective single-blind pilot study. Cell Physiol Biochem. 2014;34:988–1000.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen M, Wu L, Zhao J, Wu F, Davias MJ, Wittert GA, Norman RJ, Robker RL, Heilbron LK. Altered Glucose Metabolism in Mouse and Humans Conceived by IVF. Diabetes. 2014;63:3189–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Miles HL, Hofman PL, Peek J, Harris M, Wilson D, Robinson EM, Gluckman PD, Cutfield WS. In vitro fertilization improves childhood growth and metabolism. J Clin Endocrinol Metab. 2007;92:3441–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Gkourogianni A, Kosteria I, Telonis AG, Margeli A, Mantzou E, Konsta M, Loutradis D, Mastorakos G, Papassotiriou I, Klapa MI, et al. Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. PLoS One. 2014;9:e94001.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertil Steril. 2008;90:1662–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Pubertal development in children and adolescents born after IVF and spontaneous conception. Hum Reprod. 2008;23:2791–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Homan GF, Davies M, Norman R. The impact of lifestyle factors on reproductive performance in the general population and those undergoing infertility treatment: a review. Hum Reprod Update. 2007;13:209–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A, Kurtzberg J, Jirtle RL, Murphy SK, Hoyo C. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med. 2013;11:29.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zain MM, Norman RJ. Impact of Obesity on female fertility and fertility treatment. Womens Health. 2008;4:183–94.Google Scholar
  48. 48.
    Lindström L, Skjaerven R, Bergman E, Lundgren M, Klungsöyr K, Cnattingius S, Wikström A-K. Chronic hypertension in women after exposure to preeclampsia, being born small for gestational age or preterm. Pediatr Perinat Epidemiol. 2017;31:89–98.CrossRefGoogle Scholar
  49. 49.
    Marino JL, Moore VM, Willson KJ, Rumbold A, Whitrow MJ, Giles LC, Davies MJ. Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. PLoS One. 2014;9:e80398.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Messerlian C, Maclagan L, Basso O. Infertility and the risk of adverse pregnancy outcomes: a systematic review and meta-analysis. Hum Reprod. 2013;28:125–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Raatikainen K, Kuivasaari-Pirinen P, Hippelainen M, Heinonen S. Comparison of the pregnancy outcomes of subfertile women after infertility treatment and in naturally conceived pregnancies. Hum Reprod. 2012;27:1162–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Sharpe RFS. Environment, lifestyle and infertility- an intergenerational issue. Nat Med. 2002;8:s33–40.CrossRefGoogle Scholar
  53. 53.
    Klemetti R, Gissler M, Sevon T, Koivurova S, Ritvanen A, Hemminki E. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil Steril. 2005;84:1300–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Klemetti R, Sevon T, Gissler M, Hemminki E. Health of children born after ovulation induction. Fertil Steril. 2010;93:1157–68.PubMedCrossRefGoogle Scholar
  55. 55.
    Savage T, Peek JC, Robinson EM, Green MP, Miles HL, Mouat F, Hofman PL, Cutfield WS. Ovarian stimulation leads to shorter stature in childhood. Hum Reprod. 2012;27:3092–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95:959–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Vatten LJ. Increased risk of placenta previa in pregnancies following IVF/ICSI; a comparison of ART and non-ART pregnancies in the same mother. Hum Reprod. 2006;21:2353–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Ebbing C, Kiserud T, Johnsen SL, Albrechtsen S, Rasmussen S. Prevalence, risk factors and outcomes of velamentous and marginal cord insertions: a population-based study of 634,741 pregnancies. PLoS One. 2013;8:e70380.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Opdahl S, Henningsen AA, Tiitinen A, Bergh C, Pinborg A, Romundstad PR, Wennerholm UB, Gissler M, Skjaerven R, Romundstad LB. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30:1724–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Thomopoulos C, Salamalekis G, Kintis K, Andrianopoulou I, Michalopoulou H, Skalis G, Archontakis S, Argyri O, Tsioufis C, Makris TK, et al. Risk of hypertensive disorders in pregnancy following assisted reproductive technology: overview and meta-analysis. J Clin Hypertens. 2017;19:173–83.CrossRefGoogle Scholar
  61. 61.
    Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet. 2012;3:143.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lucas E. Epigenetic effects on the embryo as a result of periconceptional environment and assisted reproduction technology. Reprod Biomed Online. 2013;27:477–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Khosla S, Dean W, Reik W, Feil R. Epigenetic and experimental modification in early mammalian development: Part II. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update. 2001;7:419–27.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    McEwen KR, Leitch HG, Amouroux R, Hajkova P. The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochem Soc Trans. 2013;41:711–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C. The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod. 2008;79:618–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Fernandez-Gonzalez R, Ramirez MA, Bilbao A, De Fonseca FR, Gutierrez-Adan A. Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects. Mol Reprod Dev. 2007;74:1149–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Doherty AS, Mann MR, Tremblay KD, MS B, Schultz RM. Differential Effects of Culture on Imprinted H19 Expression in the Preimplantation Mouse Embryo. Biol Reprod. 2000;62:1526–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Kleijkers SH, Eijssen LM, Coonen E, Derhaag JG, Mantikou E, Jonker MJ, Mastenbroek S, Repping S, Evers JL, Dumoulin JC, et al. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod. 2015;30:2303–11.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mantikou E, Jonker MJ, Wong KM, van Montfoort AP, de Jong M, Breit TM, Repping S, Mastenbroek S. Factors affecting the gene expression of in vitro cultured human preimplantation embryos. Hum Reprod. 2016;31:298–311.PubMedGoogle Scholar
  70. 70.
    Fleming TP, Velazquez MA, Eckert JJ, Lucas ES, Watkins AJ. Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci. 2012;130:193–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Market Velker BA, Denomme MM, Mann MR. Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol Reprod. 2012;86(143):141–16.Google Scholar
  72. 72.
    El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99:632–41.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shufaro Y, Laufer N. Epigenetic concerns in assisted reproduction: update and critical review of the current literature. Fertil Steril. 2013;99:605–6.PubMedCrossRefGoogle Scholar
  74. 74.
    White CR, Denomme MM, Tekpetey FR, Feyles V, Power SG, Mann MR. High Frequency of Imprinted Methylation Errors in Human Preimplantation Embryos. Sci Rep. 2015;5:17311.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, Gaughan JP, Coutifaris C, Sapienza C. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18:3769–78.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Song S, Ghosh J, Mainigi M, Turan N, Weinerman R, Truongcao M, Coutifaris C, Sapienza C. DNA methylation differences between in vitro- and in vivo-conceived children are associated with ART procedures rather than infertility. Clin Epigenetics. 2015;7:41.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Turan N, Ghalwash MF, Katari S, Coutifaris C, Obradovic Z, Sapienza C. DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genet. 2012;5:10.Google Scholar
  78. 78.
    Li T, Vu TH, Ulaner GA, Littman E, Ling JQ, Chen HL, Hu JF, Behr B, Giudice L, Hoffman AR. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11:631–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W, Stojkovic M, Herbert M, Dean W. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod. 2010;25:2387–95.PubMedCrossRefGoogle Scholar
  80. 80.
    Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective. Hum Reprod Update. 2005;11:473–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Iliadou AN, Janson PC, Cnattingius S. Epigenetics and assisted reproductive technology. J Intern Med. 2011;270:414–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20:840–52.PubMedCrossRefGoogle Scholar
  83. 83.
    van Montfoort AP, Hanssen LL, de Sutter P, Viville S, Geraedts JP, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update. 2012;18:171–97.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod. 2014;29:1452–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum Reprod Update. 2011;17:397–417.PubMedCrossRefGoogle Scholar
  86. 86.
    Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin Epigenetics. 2017;9:14.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hanevik HI, Hessen DO, Sunde A, Breivik J. Can IVF influence human evolution? Hum Reprod. 2016;31:1397–402.PubMedCrossRefGoogle Scholar
  88. 88.
    de los Santos MJ, Gamiz P, Albert C, Galan A, Viloria T, Perez S, Romero JL, Remohi J. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100:402–7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gardner DK. The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF. Reprod Biomed Online. 2016;32:137–41.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, Friedler S, Ron-El R. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30:1073–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99:738–44.. e734PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kovacic B, Sajko MC, Vlaisavljevic V. A prospective randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94:511–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kovacic B, Vlaisavljević V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17:229–36.CrossRefGoogle Scholar
  94. 94.
    Martikou E, Bontekoe S, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Human Reprod Update. 2013;19:209.CrossRefGoogle Scholar
  95. 95.
    Dunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell. 2009;17:755–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, Alagappan R, Frampton GM, Xu P, Muffat J, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141:872–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Watson JA, Watson CJ, McCann A, Baugh J. Epigenetics, the epicenter of the hypoxic response. Epigenetics. 2010;5:293–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16:2374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang WH, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77:1274–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Hong KH, Lee H, Forman EJ, Upham KM, Scott RT Jr. Examining the temperature of embryo culture in in vitro fertilization: a randomized controlled trial comparing traditional core temperature (37 degrees C) to a more physiologic, cooler temperature (36 degrees C). Fertil Steril. 2014;102:767–73.PubMedCrossRefGoogle Scholar
  103. 103.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13:964–70.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet. 2013;9:e1003401.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X, Calafat AM, Petrozza JC, Wright D, Hauser R. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27:3583–92.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mahalingaiah S, Hauser R, Patterson DG Jr, Woudneh M, Racowsky C. Bisphenol A is not detectable in media or selected contact materials used in IVF. Reprod Biomed Online. 2012;25:608–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Morbeck DE. Air quality in the assisted reproduction laboratory: a mini-review. J Assist Reprod Genet. 2015;32:1019–24.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pinborg A. IVF/ICSI twin pregnancies: risks and prevention. Hum Reprod Update. 2005;11:575–93.PubMedCrossRefGoogle Scholar
  109. 109.
    Sullivan EA, Wang YA, Hayward I, Chambers GM, Illingworth P, McBain J, Norman RJ. Single embryo transfer reduces the risk of perinatal mortality, a population study. Hum Reprod. 2012;27:3609–15.PubMedCrossRefGoogle Scholar
  110. 110.
    Fernando D, Halliday JL, Breheny S, Healy DL. Outcomes of singleton births after blastocyst versus nonblastocyst transfer in assisted reproductive technology. Fertil Steril. 2012;97:579–84.PubMedCrossRefGoogle Scholar
  111. 111.
    Dar S, Librach CL, Gunby J, Bissonnette F, Cowan L, Fertility IVFDGoC and Andrology Society. Increased risk of preterm birth in singleton pregnancies after blastocyst versus Day 3 embryo transfer: Canadian ART Register (CARTR) analysis. Hum Reprod. 2013;28:924–8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2013;100:1615–21.. e1610.PubMedCrossRefGoogle Scholar
  113. 113.
    Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2013;101:128–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Mäkinen S, Soderstrom-Anttila V, Vainio J, Suikkari AM, Tuuri T. Does long in vitro culture promote large for gestational age babies? Hum Reprod. 2013;28:828–34.PubMedCrossRefGoogle Scholar
  115. 115.
    Chang HJ, Lee JR, Jee BC, Suh CS, Kim SH. Impact of blastocyst transfer on offspring sex ratio and the monozygotic twinning rate: a systematic review and meta-analysis. Fertil Steril. 2009;91:2381–90.PubMedCrossRefGoogle Scholar
  116. 116.
    Kaartinen NM, Kananen KM, Rodriguez-Wallberg KA, Tomas CM, Huhtala HS, Tinkanen HI. Male gender explains increased birthweight in children born after transfer of blastocysts. Hum Reprod. 2015;30:2312–20.PubMedCrossRefGoogle Scholar
  117. 117.
    Kallen B, Finnstrom O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril. 2010;94:1680–3.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kawachiya S, Bodri D, Shimada N, Kato K, Takehara Y, Kato O. Blastocyst culture is associated with an elevated incidence of monozygotic twinning after single embryo transfer. Fertil Steril. 2011;95:2140–2.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Moayeri SE, Behr B, Lathi RB, Westphal LM, Milki AA. Risk of monozygotic twinning with blastocyst transfer decreases over time: an 8-year experience. Fertil Steril. 2007;87:1028–32.PubMedCrossRefGoogle Scholar
  120. 120.
    Scott RT Jr, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, Tao X, Treff NR. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100:697–703.PubMedCrossRefGoogle Scholar
  121. 121.
    Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23:139–55.PubMedGoogle Scholar
  122. 122.
    Shaw L, Sneddon SF, Brison DR, Kimber SJ. Comparison of gene expression in fresh and frozen-thawed human preimplantation embryos. Reproduction. 2012;144:569–82.PubMedCrossRefGoogle Scholar
  123. 123.
    Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M, Yoshimura Y, Kuramoto T, Saito H, Nakaza A, et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99:450–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Wennerholm UB, Henningsen AK, Romundstad LB, Bergh C, Pinborg A, Skjaerven R, Forman J, Gissler M, Nygren KG, Tiitinen A. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013;28:2545–53.PubMedCrossRefGoogle Scholar
  125. 125.
    Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27:1343–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Pinborg A, Henningsen AA, Loft A, Malchau SS, Forman J, Andersen AN. Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique? Hum Reprod. 2014;29:618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wikland M, Hardarson T, Hillensjo T, Westin C, Westlander G, Wood M, Wennerholm UB. Obstetric outcomes after transfer of vitrified blastocysts. Hum Reprod. 2010;25:1699–707.PubMedCrossRefGoogle Scholar
  128. 128.
    Belva F, Bonduelle M, Roelants G, Verheyen G, Van Landuyt L. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum Reprod. 2016;31:1610–20.PubMedCrossRefGoogle Scholar
  129. 129.
    Shi W, Xue X, Zhang S, Zhao W, Liu S, Zhou H, Wang M, Shi J. Perinatal and neonatal outcomes of 494 babies delivered from 972 vitrified embryo transfers. Fertil Steril. 2012;97:1338–42.PubMedCrossRefGoogle Scholar
  130. 130.
    Takahashi K, Mukaida T, Goto T, Oka C. Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-year follow-up study. Fertil Steril. 2005;84:88–92.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Eckert JJ, Velazquez MA, Fleming TP. Cell Signalling During Blastocyst Morphogenesis. Adv Exp Med Biol. 2015;843:1–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Pantaleon M. The Role of Hexosamine Biosynthesis and Signaling in Early Development. Adv Exp Med Biol. 2015;843:53–76.PubMedCrossRefGoogle Scholar
  133. 133.
    Morbeck DE, Krisher RL, Herrick JR, Baumann NA, Matern D, Moyer T. Composition of commercial media used for human embryo culture. Fertil Steril. 2014;102:759–66.. e759CrossRefGoogle Scholar
  134. 134.
    Menezo Y, Lichtblau I, Elder K. New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet. 2013;30:293.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Xu J, Sinclair K. One-carbon metabolism and epigenetic regulation of embryo development. Reprod Fertil Develop. 2014;27:667–76.CrossRefGoogle Scholar
  136. 136.
    Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exenchephaly by ammonium ions. J Reprod Fert. 1994;102:305–12.CrossRefGoogle Scholar
  137. 137.
    Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod. 2005;20:1364–71.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kleijkers SH, van Montfoort AP, Bekers O, Coonen E, Derhaag JG, Evers JL, Dumoulin JC. Ammonium accumulation in commercially available embryo culture media and protein supplements during storage at 2-8 degrees C and during incubation at 37 degrees C. Hum Reprod. 2016;31:1192–209.PubMedCrossRefGoogle Scholar
  139. 139.
    Shao W-J, Tao L-Y, Xie J-Y, Gao C, Hu J-H, Zhao R-Q. Exposure of Preimplantation Embryos to Insulin Alters Expression of Imprinted Genes. Comp Med. 2007;57:482–6.PubMedGoogle Scholar
  140. 140.
    Dyrlund TF, Kirkegaard K, Poulsen ET, Sanggaard KW, Hindkjaer JJ, Kjems J, Enghild JJ, Ingerslev HJ. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis. Hum Reprod. 2014;29:2421–30.PubMedCrossRefGoogle Scholar
  141. 141.
    Morbeck DE, Paczkowski M, Fredrickson JR, Krisher RL, Hoff HS, Baumann NA, Moyer T, Matern D. Composition of protein supplements used for human embryo culture. J Assist Reprod Genet. 2014;31:1703–11.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Fredrickson J, Krisher R, Morbeck DE. The impact of the protein stabilizer octanoic acid on embryonic development and fetal growth in a murine model. J Assist Reprod Genet. 2015;32:1517–24.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Zhu J, Li M, Chen L, Liu P, Qiao J. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod. 2014;29:1387–92.PubMedCrossRefGoogle Scholar
  144. 144.
    Kleijkers SH, van Montfoort AP, Smits LJ, Coonen E, Derhaag JG, Evers JL, Dumoulin JC. Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn. Hum Reprod. 2015;30:1332–7.Google Scholar
  145. 145.
    Zandstra H, Van Montfoort AP, Dumoulin JC. Does the type of culture medium used influence birthweight of children born after IVF? Hum Reprod. 2015;30:530–42.PubMedCrossRefGoogle Scholar
  146. 146.
    Lemmen JG, Pinborg A, Rasmussen S, Ziebe S. Birthweight distribution in ART singletons resulting from embryo culture in two different culture media compared with the national population. Hum Reprod. 2014;29:2326–32.PubMedCrossRefGoogle Scholar
  147. 147.
    Eskild A, Monkerud L, Tanbo T. Birthweight and placental weight; do changes in culture media used for IVF matter? Comparisons with spontaneous pregnancies in the corresponding time periods. Hum Reprod. 2013;28:3207–14.PubMedCrossRefGoogle Scholar
  148. 148.
    Bouillon C, Leandri R, Desch L, Ernst A, Bruno C, Cerf C, Chiron A, Souchay C, Burguet A, Jimenez C, et al. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization? PLoS One. 2016;11:e0150857.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Dumoulin JC, Land JA, Van Montfoort AP, Nelissen EC, Coonen E, Derhaag JG, Schreurs IL, Dunselman GA, Kester AD, Geraedts JP, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25:605–12.CrossRefGoogle Scholar
  150. 150.
    Carrasco B, Boada M, Rodriguez I, Coroleu B, Barri PN, Veiga A. Does culture medium influence offspring birth weight? Fertil Steril. 2013;100:1283–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Ziebe S, Loft A, Povlsen BB, Erb K, Agerholm I, Aasted M, Gabrielsen A, Hnida C, Zobel DP, Munding B, et al. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil Steril. 2013;99:1600–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Kleijkers SH, Mantikou E, Slappendel E, Consten D, van Echten-Arends J, Wetzels AM, van Wely M, Smits LJ, van Montfoort AP, Repping S, et al. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT. Hum Reprod. 2016;31:2219–30.PubMedCrossRefGoogle Scholar
  153. 153.
    Sunde A, Brison D, Dumoulin J, Harper J, Lundin K, Magli MC, Van den Abbeel E, Veiga A. Time to take human embryo culture seriously. Hum Reprod. 2016;31:2174–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arne Sunde
    • 1
  1. 1.Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations