Keystroke Biometric Recognition on Chinese Long Text Input

  • Xiaodong Li
  • Jiafen LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9794)


Keystroke Biometric is useful in distinguishing legal users from perpetrators in online activities. Most previous keystroke studies focus on short text, however short text keystroke can only be used in limited scenarios such as user name and password input and provide one-time authentication. In this paper, we concentrate on how to detect whether current user is the legal one during the whole activity, such as writing an E-mail and chat online. We developed a JAVA applet to collect raw data, and then extracted features and constructed 4 classifiers. In the experiment, we required 30 users to choose a topic randomly and then type in a text about 400 Chinese characters on it. This experiment repeated 9 times in different days under the same typing environment. The accuracy of different methods shifts from 94.07 % to 98.15 %, the FAR reaches to 0.74 % and FRR to 1.15 %. In summary, Chinese free long text keystroke biometric recognition can be used to authenticate users during the whole online activity with satisfactory precision.


Biometric features Chinese free-text Keystroke dynamics Authentication 



This work was supported by National Natural Science Foundation of China [60903201, 91218301]; and the Fundamental Research Funds for the Central Universities [JBK120505, JBK140129].


  1. 1.
    Lisa, M.V., Lina, Z., Andrew, S.: Automated stress detection using keystroke and linguistic features: an exploratory study. Int. J. Hum Comput Stud. 10(67), 870–886 (2009)Google Scholar
  2. 2.
    Bryan, W.L., Harter, N.: Studies in the physiology and psychology of telegraphic language. Psychol. Rev. 1(4), 27–53 (1970)Google Scholar
  3. 3.
    Forsen, G.E., Nelson M.R., et al.: Personal attributes authentication techniques. Personal Attributes Authentication Techniques (1977)Google Scholar
  4. 4.
    Salima, D., Jan, R.M.: The reliability of user authentication through keystroke dynamics. Stat. Neerl. 4(63), 432–449 (2009)MathSciNetGoogle Scholar
  5. 5.
    Gaines, R.S., Lisowski, W., et al.: Authentication by keystroke timing: some preliminary results. Authentication by Keystroke Timing Some Preliminary Results (1980)Google Scholar
  6. 6.
    Umphress, D., Williams, G.: Identity verification through keyboard characteristics. Int. J. Man Mach. Stud. 3(23), 263–273 (1985)CrossRefGoogle Scholar
  7. 7.
    Candler, S., Johnson, R.S.: Computer-access security systems using keystroke dynamics. IEEE Trans. Pattern Anal. Mach. Intell. 12(12), 1217–1222 (1990)CrossRefGoogle Scholar
  8. 8.
    Leggett, J., Williams, G., et al.: Dynamic identity verification via keystroke characteristics. Int. J. Man Mach. Stud. 6(35), 859–870 (1991)CrossRefGoogle Scholar
  9. 9.
    Napier, R., Laverty, W., et al.: Keyboard user verification: toward an accurate, efficient, and ecologically valid algorithm. Int. J. Hum Comput Stud. 2(43), 213–222 (1995)CrossRefGoogle Scholar
  10. 10.
    Brown, M., Rogers, S.J.: User identification via keystroke characteristics of typed names using neural networks. Int. J. Man Mach. Stud. 6(39), 999–1014 (1993)CrossRefGoogle Scholar
  11. 11.
    Obaidat, M.S., Sadoun, B.: Verification of computer users using keystroke dynamics. IEEE Trans. Syst. Man Cybern. B Cybern. 2(27), 261–269 (1997)CrossRefGoogle Scholar
  12. 12.
    Tapiador, M., Sigenza, J.A., et al.: Fuzzy keystroke biometrics on web security. In: Automatic Identification Advanced Technologies (2000)Google Scholar
  13. 13.
    Robinson, J.A., Liang, V.W., et al.: Computer user verification using login string keystroke dynamics. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2(28), 236–241 (1998)CrossRefGoogle Scholar
  14. 14.
    Gunetti, D., Picardi, C.: Keystroke analysis of free text. ACM Trans. Inf. Syst. Secur. 3(8), 312–347 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pilsung, K., Sungzoon, C.: Keystroke dynamics-based user authentication using long and free text strings from various input devices. Inf. Sci. 308, 72–93 (2015)CrossRefGoogle Scholar
  16. 16.
    Curtin, M., Tappert, C., Villani, M., et al.: Keystroke biometric recognition on long-text input: a feasibility study. In: Proceedings of International Workshop SCI Comp/Comp Stat (IWSCCS), Hong Kong (2006)Google Scholar
  17. 17.
    Monrose, F., Rubin, A.D.: Keystroke dynamics as a biometric for authentication. Future Gener. Comput. Syst. 4(16), 351–359 (2000)CrossRefGoogle Scholar
  18. 18.
    Patrick, B., Hafez, B.: Continuous authentication using biometric keystroke dynamics. In: The Norwegian Information Security Conference (NISK), pp. 1–12 (2009)Google Scholar
  19. 19.
    Gunetti, D., Picardi, C., Ruffo, G.: Dealing with different languages and old profiles in keystroke analysis of free text. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 347–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Dexu, Z., Xiaoqin, H.: Dynamic free text keystroke continuous identification based on the rewards and punishments algorithm with frequency. J. Netw. New Media 2, 41–49 (2015). (in Chinese)Google Scholar
  21. 21.
    Villani, M., Tappert, C., Giang, N., et al.: Keystroke biometric recognition studies on long-text input under ideal and application-oriented conditions. In: Computer Vision and Pattern Recognition Workshop, pp. 39–39 (2006)Google Scholar
  22. 22.
    Cheng, Y., Yunkai, W., Ruilong, H.: Behavior research of internet user passwords based on pinyin analysis. Comput. Eng. 09, 174–177 (2014). (in Chinese)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Economic Information EngineeringSouthwestern University of Finance and EconomicsChengduPeople’s Republic of China

Personalised recommendations