Advertisement

A Norm-Aware Multi-agent System for Social Simulations in a River Basin

  • Ignasi Gómez-SebastiàEmail author
  • Luis Oliva-Felipe
  • Ulises Cortés
  • Marta Verdaguer
  • Manel Poch
  • Ignasi Rodríguez-Roda
  • Javier Vázquez-Salceda
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 113)

Abstract

Wastewater management is a complex task involving a wide range of technical environmental and social factors. Furthermore, it typically requires the coordination of a heterogeneous society of actors with different goals. Regulations and protocols can be effectively used to tackle this complexity. In this chapter we present a norm-aware multi-agent system for social simulations in a river basin. The norms we present are inspired in European policies for wastewater management and they can evolve through time.

Keywords

Pollutant Concentration Common Good Normative System Competent Authority River Basin Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Prof. Cortés is a member of the Sistema Nacional de Investigadores (México).

References

  1. Aldewereld, H., & Dignum, V. (2010). OperettA: Organization-oriented development environment. In Languages, methodologies, and development tools for multi-agent systems (pp. 1–18). Berlin, Heidelberg: Springer.Google Scholar
  2. Aldewereld, H., Padget, J., Vasconcelos, W., Vázquez-Salceda, J., Sergeant, P., & Staikopoulos, A. (2010). Adaptable, organization-aware, service-oriented computing. IEEE Intelligent Systems, 25(4), 26–35.Google Scholar
  3. Alvarez-Napagao, S. (2016). Bringing social reality to multiagent and service architectures. Practical reductions for monitoring of deontic-logic and constitutive norms. PhD Dissertation. Universitat Politècnica de Catalunya-BarcelonaTech.Google Scholar
  4. Dignum, F., Dignum, V., Padget, J., & Vázquez-Salceda, J. (2009, December). Organizing web services to develop dynamic, flexible, distributed systems. In Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services (pp. 225–234). ACM.Google Scholar
  5. Ernst, A., Schulz, C., Schwarz, N., & Janisch, S. (2007). Modelling of water use decisions in a large, spatially explicit, coupled simulation system. In Social simulation: Technologies, advances and new discoveries (pp. 138–149). Oxford: Elsevier.Google Scholar
  6. European Council. (1991). Directive concerning urban waste water treatment (91/271/EEC), Vol. 30.Google Scholar
  7. Gailliard, N., Barreteau, O., & Richard-Ferroudji, A. (2014). Participatory policy making in practice: simulating boundary work in water governance. In Advances in social simulation (pp. 333–342). Berlin, Heidelberg: Springer.Google Scholar
  8. Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In Agreement technologies (pp. 565–582). Netherlands: Springer.Google Scholar
  9. Gómez-Sebastià, I. (2016). NoMoDEI a framework for norm monitoring on dynamic electronic institutions. PhD Dissertation. Universitat Politècnica de Catalunya-BarcelonaTech. http://futur.upc.edu/17497419. Accessed May 03, 2016.
  10. Hamilton, H. R. (1969). Systems simulation for regional analysis: An application to River-Basin planning. Cambridge, Massachusetts/London: Massachusetts Institute of Technology.Google Scholar
  11. Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248.CrossRefGoogle Scholar
  12. Hardin, G. (2007). The tragedy of the unmanaged commons. In Evolutionary perspectives on environmental problems (pp. 105–107). New Brunswick, NJ: Transaction Publishers.Google Scholar
  13. Lloyd, W. F. (1833). Two lectures on the checks to population: Delivered before the University of Oxford. In Michaelmas TERM 1832. Oxford: JH Parker.Google Scholar
  14. Moses, Y., & Tennenholtz, M. (1995). Artificial social systems. Computers and Artificial Intelligence, 14, 533–562.MathSciNetGoogle Scholar
  15. North, D. C. (1990). Institutions, institutional change and economic performance. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Ostrom, E., Gardner, R., & Walker, J. (1994). Rules, games, and common-pool resources. Ann Arbor: University of Michigan Press.Google Scholar
  17. Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. In Political economy of institutions and decisions. Cambridge: Cambridge University Press.Google Scholar
  18. Ostrom, E. (1999). Coping with tragedies of the commons. Annual Review of Political Science, 2(1), 493–535.CrossRefGoogle Scholar
  19. Ostrom, E. (2000). Collective action and the evolution of social norms. Journal of Economic Perspectives, 14(3), 137–158.CrossRefGoogle Scholar
  20. Poch, M., Comas, J., Rodriguez-Roda, I., Sanchez-Marre, M., & Cortés, U. (2004). Designing and building real environmental decision support systems. Environmental Modelling and Software, 19(9), 857–873.CrossRefGoogle Scholar
  21. Smajgl, A., Heckbert, S., Ward, J., & Straton, A. (2009). Simulating impacts of water trading in an institutional perspective. Environmental Modelling and Software, 24(2), 191–201.CrossRefGoogle Scholar
  22. Vázquez-Salceda, J., Vasconcelos, W. W., Padget, J., Dignum, F., Clarke, S., & Roig, M. (2010). ALIVE: An agent-based framework for dynamic and robust service-oriented applications. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 1637–1638). International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  23. Vázquez-Salceda, J. (2003). The role of norms and electronic institutions in multi-agent systems applied to complex domains. The HARMONIA framework. Ai Communications, 16(3), 209–212.MathSciNetzbMATHGoogle Scholar
  24. Verdaguer, M., Clara, N., & Poch, M. (2012). Ant colony optimization-based method for managing industrial influents in wastewater systems. AIChE Journal, 58(10), 3070–3079.CrossRefGoogle Scholar
  25. Verdaguer, M., Poch, M., Gómez-Sebastià, I., Oliva, L., Vázquez-Salceda, J., & Cortés, U. (2016). Organizational structure of an agent-based model for integrated wastewater management systems. Elsevier.Google Scholar
  26. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10(2), 115–152.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ignasi Gómez-Sebastià
    • 1
    Email author
  • Luis Oliva-Felipe
    • 1
  • Ulises Cortés
    • 1
  • Marta Verdaguer
    • 2
  • Manel Poch
    • 2
  • Ignasi Rodríguez-Roda
    • 2
    • 3
  • Javier Vázquez-Salceda
    • 1
  1. 1.Knowledge Engineering and Machine Learning GroupUniversitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Laboratori d’Enginyeria Química i Ambiental (LEQUIA)University of GironaGironaSpain
  3. 3.Institut Català de Recerca de l’Aigua (ICRA)GironaSpain

Personalised recommendations