Gene Therapeutic Approaches to Overcome ABCB1-Mediated Drug Resistance

Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 209)

Abstract

Multidrug resistance (MDR) to pharmaceutical active agents is a common clinical problem in patients suffering from cancer. MDR is often mediated by over expression of trans-membrane xenobiotic transport molecules belonging to the superfamily of ATP-binding cassette (ABC)-transporters. This protein family includes the classical MDR-associated transporter ABCB1 (MDR1/P-gp). Inhibition of ABC-transporters by low molecular weight compounds in cancer patients has been extensively investigated in clinical trials, but the results have been disappointing. Thus, in the last decades alternative experimental therapeutic strategies for overcoming MDR were under extensive investigation. These include gene therapeutic approaches applying antisense-, ribozyme-, RNA interference-, and CRISPR/Cas9-based techniques. Various delivery strategies were used to reverse MDR in different tumor models in vitro and in vivo. Results and conclusions of these gene therapeutic studies will be discussed.

Keywords

Multidrug resistance Cancer Gene therapy RNA interference CRISPR/Cas9 

References

  1. Ahmed O, Krühn A, Lage H (2015) Delivery of siRNAs to cancer cells via bacteria. Methods Mol Biol 1218:117–129CrossRefPubMedGoogle Scholar
  2. Ahn SJ, Jeon YH, Lee YJ, Lee YL, Lee SW, Ahn BC, Ha JH, Lee J (2010) Enhanced anti-tumor effects of combined MDR1 RNA interference and human sodium/iodide symporter (NIS) radioiodine gene therapy using an adenoviral system in a colon cancer model. Cancer Gene Ther 17:492–500CrossRefPubMedPubMedCentralGoogle Scholar
  3. Critchley RJ, Jezzard S, Radford KJ, Goussard S, Lemoine NR, Grillot-Courvalin C, Vassaux G (2004) Potential therapeutic applications of recombinant, invasive E. coli. Gene Ther 11:1224–1233CrossRefPubMedGoogle Scholar
  4. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498CrossRefPubMedGoogle Scholar
  5. Gao Z, Gao Z, Fields JZ, Boman BM (1999) Tumor-specific expression of anti-mdr1 ribozyme selectively restores chemosensitivity in multidrug-resistant colon-adenocarcinoma cells. Int J Cancer 82:346–352CrossRefPubMedGoogle Scholar
  6. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451CrossRefPubMedPubMedCentralGoogle Scholar
  7. Holm PS, Scanlon KJ, Dietel M (1994) Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme. Br J Cancer 70:239–243CrossRefPubMedPubMedCentralGoogle Scholar
  8. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162CrossRefPubMedGoogle Scholar
  9. Kang H, DeLong R, Fisher MH, Juliano RL (2005) Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm Res 22:2099–2106CrossRefPubMedGoogle Scholar
  10. Kaszubiak A, Holm PS, Lage H (2007) Overcoming the classical multidrug resistance phenotype by adenoviral delivery of anti-MDR1 short hairpin RNAs and ribozymes. Int J Oncol 31:419–430PubMedGoogle Scholar
  11. Kennedy EM, Kornepati AV, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, Kastan MB, Cullen BR (2014) Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol 88:11965–11972CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kobayashi H, Dorai T, Holland JF, Ohnuma T (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res 54:1271–1275PubMedGoogle Scholar
  13. Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89CrossRefPubMedGoogle Scholar
  14. Kowalski P, Surowiak P, Lage H (2005) Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol Ther 11:508–522CrossRefPubMedGoogle Scholar
  15. Krühn A, Wang A, Fruehauf JH, Lage H (2009) Delivery of short hairpin RNAs by transkingdom RNA interference modulates the classical ABCB1-mediated multidrug-resistant phenotype of cancer cells. Cell Cycle 8:3349–3354CrossRefPubMedGoogle Scholar
  16. Lage H (2008) An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65:3145–3167CrossRefPubMedGoogle Scholar
  17. Lage H (2009) Therapeutic potential of RNA interference in drug-resistant cancers. Future Oncol 5:169–185CrossRefPubMedGoogle Scholar
  18. Lage H, Fruehauf JH (2011) Delivery of therapeutic RNA molecules to cancer cells by bacteria. Ther Deliv 2:441–449CrossRefPubMedGoogle Scholar
  19. Nieth C, Priebsch A, Stege A, Lage H (2003) Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 545:144–150CrossRefPubMedGoogle Scholar
  20. Nourbakhsh M, Jaafari MR, Lage H, Abnous K, Mosaffa F, Badiee A, Behravan J (2015) Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer. Iran J Basic Med Sci 18:385–392PubMedPubMedCentralGoogle Scholar
  21. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365CrossRefPubMedGoogle Scholar
  22. Simoff I, Karlgren M, Backlund M, Lindström AC, Gaugaz FZ, Matsson P, Artursson P (2016) Complete knockout of endogenous Mdr1 (Abcb1) in MDCK cells by CRISPR-Cas9. J Pharm Sci 105:1017–1021CrossRefPubMedGoogle Scholar
  23. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178CrossRefPubMedGoogle Scholar
  24. Stege A, Priebsch A, Nieth C, Lage H (2004) Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 11:699–706CrossRefPubMedGoogle Scholar
  25. Stein U, Walther W, Stege A, Kaszubiak A, Fichtner I, Lage H (2008) Complete in vivo reversal of the multidrug resistance (MDR) phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther 16:178–186CrossRefPubMedGoogle Scholar
  26. Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM, Duan Z (2010) Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One 5:e10764CrossRefPubMedPubMedCentralGoogle Scholar
  27. Vasanthakumar G, Ahmed NK (1989) Modulation of drug resistance in a daunorubicin resistant subline with oligonucleoside methylphosphonates. Cancer Commun 1:225–232PubMedGoogle Scholar
  28. Walther W, Stein U, Fichtner I, Malcherek L, Lemm M, Schlag PM (2001) Non-viral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther 8:173–180CrossRefPubMedGoogle Scholar
  29. Walther W, Stein U, Lage H (2010) Jet-injection of short hairpin RNA encoding vectors into tumour cells. Methods Mol Biol 629:123–139PubMedGoogle Scholar
  30. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138CrossRefPubMedGoogle Scholar
  31. Wu H, Hait WN, Yang JM (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63:1515–1519PubMedGoogle Scholar
  32. Xu H, Li Z, Si J (2014) Nanocarriers in gene therapy: a review. J Biomed Nanotechnol 10:3483–3507CrossRefPubMedGoogle Scholar
  33. Yang X, Iyer AK, Singh A, Milane L, Choy E, Hornicek FJ, Amiji MM, Duan Z (2015) Cluster of differentiation 44 targeted hyaluronic acid based nanoparticles for MDR1 siRNA delivery to overcome drug resistance in ovarian cancer. Pharm Res 32:2097–2109CrossRefPubMedGoogle Scholar
  34. Ye X, Liu T, Gong Y, Zheng B, Meng W, Leng Y (2009) Lentivirus-mediated RNA interference reversing the drug-resistance in MDR1 single-factor resistant cell line K562/MDR1. Leuk Res 33:1114–1119CrossRefPubMedGoogle Scholar
  35. Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y (2012) Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials 33:6495–6506CrossRefPubMedGoogle Scholar
  36. Zhao P, Wang H, Gao H, Li C, Zhang Y (2013) Reversal of multidrug resistance by magnetic chitosan-Fe3O4 nanoparticle-encapsulated MDR1 siRNA in glioblastoma cell line. Neurol Res 35:821–828CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Fachbereich PathologieVivantes Klinikum NeuköllnBerlinGermany

Personalised recommendations