Advertisement

p53 Replacement Therapy for Cancer

  • Hiroshi Tazawa
  • Shunsuke Kagawa
  • Toshiyoshi FujiwaraEmail author
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 209)

Abstract

Tumor suppressor gene (TSG) replacement therapy that involves various delivery systems is emerging as a promising antitumor strategy because malignant tumors develop through genetic alterations in TSGs. The most potent therapeutic TSG for tumor suppression is the multifunctional transcription factor p53 gene that regulates diverse cellular phenomena such as cell cycle arrest, senescence, apoptosis, and autophagy. Since the p53 gene is frequently inactivated by aberrant genetic regulation in human cancers, p53 replacement therapy is widely and frequently used as a potent antitumor strategy to restore wild-type p53 function in the p53-inactivated tumors. This chapter focuses on four types of p53 transfer systems: cationic liposome–DNA plasmid complexes, a replication-deficient adenovirus vector, a replication-competent adenovirus vector, and a protein transduction system. Moreover, we discuss recent advances in our understanding of the molecular basis of the p53-mediated cell death signaling pathway and therapeutic methods for enhancing tumor cell death and induction of bystander effects within tumor tissues in p53 replacement therapy. Exploration of the molecular mechanism underlying the p53-mediated tumor-suppressive network system and development of an effective strategy for enhancing p53-mediated cell death signaling pathways would lead to an improvement in the clinical outcome of patients with p53-inactivated cancers.

Keywords

Cancer p53 Gene therapy Adenovirus 

Abbreviations

TSG

Tumor suppressor gene

MDM2

Mouse double minute 2

DRAM

Damage-regulated autophagy modulator

hTERT

human telomerase reverse transcriptase

CAR

Coxsackie and adenovirus receptors

DCs

Dendritic cells

Notes

Acknowledgments

This study was supported by grants from the Ministry of Health, Labour, and Welfare of Japan and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

  1. Barak Y, Juven T, Haffner R, Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12(2):461–468PubMedPubMedCentralGoogle Scholar
  2. Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, Fang B, Lee JJ, Roth JA (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 58(11):2288–2292PubMedGoogle Scholar
  3. Bykov VJ, Wiman KG (2014) Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 588(16):2622–2627CrossRefPubMedGoogle Scholar
  4. Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288CrossRefPubMedGoogle Scholar
  5. Carroll JL, Nielsen LL, Pruett SB, Mathis JM (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 1(1):49–60PubMedGoogle Scholar
  6. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134CrossRefPubMedGoogle Scholar
  7. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825Google Scholar
  8. Fang B, Roth JA (2003) Tumor-suppressing gene therapy. Cancer Biol Ther 2(4 Suppl 1):S115–S121PubMedGoogle Scholar
  9. Feng B, Tomizawa K, Michiue H, Miyatake S, Han XJ, Fujimura A, Seno M, Kirihata M, Matsui H (2009) Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 30(9):1746–1755CrossRefPubMedGoogle Scholar
  10. Feng B, Tomizawa K, Michiue H, Han XJ, Miyatake S, Matsui H (2010) Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials 31(14):4139–4145CrossRefPubMedGoogle Scholar
  11. Frank DK, Frederick MJ, Liu TJ, Clayman GL (1998) Bystander effect in the adenovirus-mediated wild-type p53 gene therapy model of human squamous cell carcinoma of the head and neck. Clin Cancer Res 4(10):2521–2528PubMedGoogle Scholar
  12. Fujiwara T, Urata Y, Tanaka N (2007) Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Curr Cancer Drug Targets 7(2):191–201CrossRefPubMedGoogle Scholar
  13. Fujiwara K, Daido S, Yamamoto A, Kobayashi R, Yokoyama T, Aoki H, Iwado E, Shinojima N, Kondo Y, Kondo S (2008) Pivotal role of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in apoptosis and autophagy. J Biol Chem 283(1):388–397CrossRefPubMedGoogle Scholar
  14. Fukazawa T, Fujiwara T, Morimoto Y, Shao J, Nishizaki M, Kadowaki Y, Hizuta A, Owen-Schaub LB, Roth JA, Tanaka N (1999) Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells. Oncogene 18(13):2189–2199CrossRefPubMedGoogle Scholar
  15. Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14(8):929–935CrossRefPubMedGoogle Scholar
  16. Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR, Kaspers GJ, Wuisman PI, van Beusechem VW (2007) Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther 6(5):1552–1561CrossRefPubMedGoogle Scholar
  17. Hasei J, Sasaki T, Tazawa H, Osaki S, Yamakawa Y, Kunisada T, Yoshida A, Hashimoto Y, Onishi T, Uno F, Kagawa S, Urata Y, Ozaki T, Fujiwara T (2013) Dual programmed cell death pathways induced by p53 transactivation overcome resistance to oncolytic adenovirus in human osteosarcoma cells. Mol Cancer Ther 12(3):314–325CrossRefPubMedGoogle Scholar
  18. Hashimoto Y, Watanabe Y, Shirakiya Y, Uno F, Kagawa S, Kawamura H, Nagai K, Tanaka N, Kumon H, Urata Y, Fujiwara T (2008) Establishment of biological and pharmacokinetic assays of telomerase-specific replication-selective adenovirus. Cancer Sci 99(2):385–390CrossRefPubMedGoogle Scholar
  19. Hitsuda T, Michiue H, Kitamatsu M, Fujimura A, Wang F, Yamamoto T, Han XJ, Tazawa H, Uneda A, Ohmori I, Nishiki T, Tomizawa K, Matsui H (2012) A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Biomaterials 33(18):4665–4672CrossRefPubMedGoogle Scholar
  20. Idogawa M, Sasaki Y, Suzuki H, Mita H, Imai K, Shinomura Y, Tokino T (2009) A single recombinant adenovirus expressing p53 and p21-targeting artificial microRNAs efficiently induces apoptosis in human cancer cells. Clin Cancer Res 15(11):3725–3732CrossRefPubMedGoogle Scholar
  21. Itoshima T, Fujiwara T, Waku T, Shao J, Kataoka M, Yarbrough WG, Liu TJ, Roth JA, Tanaka N, Kodama M (2000) Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes: involvement of p53 accumulation via ARF-mediated MDM2 down-regulation. Clin Cancer Res 6(7):2851–2859PubMedGoogle Scholar
  22. Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F, Taki M, Kyo S, Tanaka N, Fujiwara T (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10(1 Pt 1):285–292CrossRefPubMedGoogle Scholar
  23. Li Y, Mao Y, Rosal RV, Dinnen RD, Williams AC, Brandt-Rauf PW, Fine RL (2005) Selective induction of apoptosis through the FADD/caspase-8 pathway by a p53 c-terminal peptide in human pre-malignant and malignant cells. Int J Cancer 115(1):55–64CrossRefPubMedGoogle Scholar
  24. Michiue H, Tomizawa K, Matsushita M, Tamiya T, Lu YF, Ichikawa T, Date I, Matsui H (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. FEBS Lett 579(18):3965–3969CrossRefPubMedGoogle Scholar
  25. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299CrossRefPubMedGoogle Scholar
  26. Murakami T, Tokunaga N, Waku T, Gomi S, Kagawa S, Tanaka N, Fujiwara T (2004) Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. Clin Cancer Res 10(11):3871–3880CrossRefPubMedGoogle Scholar
  27. Najafi M, Fardid R, Hadadi G, Fardid M (2014) The mechanisms of radiation-induced bystander effect. J Biomed Phys Eng 4(4):163–172PubMedPubMedCentralGoogle Scholar
  28. Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631CrossRefPubMedGoogle Scholar
  29. Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen S, Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18(2):429–434CrossRefPubMedGoogle Scholar
  30. Nishizaki M, Fujiwara T, Tanida T, Hizuta A, Nishimori H, Tokino T, Nakamura Y, Bouvet M, Roth JA, Tanaka N (1999) Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res 5(5):1015–1023PubMedGoogle Scholar
  31. Nishizaki M, Meyn RE, Levy LB, Atkinson EN, White RA, Roth JA, Ji L (2001) Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin Cancer Res 7(9):2887–2897PubMedGoogle Scholar
  32. Ognjanovic S, Olivier M, Bergemann TL, Hainaut P (2012) Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118(5):1387–1396CrossRefPubMedGoogle Scholar
  33. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19(6):607–614CrossRefPubMedGoogle Scholar
  34. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ramesh R, Saeki T, Templeton NS, Ji L, Stephens LC, Ito I, Wilson DR, Wu Z, Branch CD, Minna JD, Roth JA (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 3(3):337–350CrossRefPubMedGoogle Scholar
  36. Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89(1):21–39CrossRefPubMedGoogle Scholar
  37. Roth JA, Swisher SG, Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park) 13(10 Suppl 5):148–154Google Scholar
  38. Sakai R, Kagawa S, Yamasaki Y, Kojima T, Uno F, Hashimoto Y, Watanabe Y, Urata Y, Tanaka N, Fujiwara T (2010) Preclinical evaluation of differentially targeting dual virotherapy for human solid cancer. Mol Cancer Ther 9(6):1884–1893CrossRefPubMedGoogle Scholar
  39. Selivanova G (2014) Wild type p53 reactivation: from lab bench to clinic. FEBS Lett 588(16):2628–2638CrossRefPubMedGoogle Scholar
  40. Takenobu T, Tomizawa K, Matsushita M, Li ST, Moriwaki A, Lu YF, Matsui H (2002) Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther 1(12):1043–1049PubMedGoogle Scholar
  41. Tango Y, Fujiwara T, Itoshima T, Takata Y, Katsuda K, Uno F, Ohtani S, Tani T, Roth JA, Tanaka N (2002) Adenovirus-mediated p14ARF gene transfer cooperates with Ad5CMV-p53 to induce apoptosis in human cancer cells. Hum Gene Ther 13(11):1373–1382CrossRefPubMedGoogle Scholar
  42. Tazawa H, Kagawa S, Fujiwara T (2013) Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther 13(11):1569–1583CrossRefPubMedGoogle Scholar
  43. Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, Nakamura H, Makino K, Kuratsu J, Futaki S, Tomizawa K (2012) Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 33(35):9061–9069CrossRefPubMedGoogle Scholar
  44. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848CrossRefPubMedGoogle Scholar
  45. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431CrossRefPubMedGoogle Scholar
  46. Waku T, Fujiwara T, Shao J, Itoshima T, Murakami T, Kataoka M, Gomi S, Roth JA, Tanaka N (2000) Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. J Immunol 165(10):5884–5890CrossRefPubMedGoogle Scholar
  47. Xu L, Pirollo KF, Chang EH (1997) Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vitro. Hum Gene Ther 8(4):467–475. doi: 10.1089/hum.1997.8.4-467 CrossRefPubMedGoogle Scholar
  48. Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, Rait A, Chang EH (2001) Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 7(10):723–734PubMedPubMedCentralGoogle Scholar
  49. Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1(5):337–346PubMedGoogle Scholar
  50. Yamasaki Y, Tazawa H, Hashimoto Y, Kojima T, Kuroda S, Yano S, Yoshida R, Uno F, Mizuguchi H, Ohtsuru A, Urata Y, Kagawa S, Fujiwara T (2012) A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through E1A-dependent p21 and MDM2 suppression. Eur J Cancer 48(14):2282–2291CrossRefPubMedGoogle Scholar
  51. Zou Y, Zong G, Ling YH, Hao MM, Lozano G, Hong WK, Perez-Soler R (1998) Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst 90(15):1130–1137CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hiroshi Tazawa
    • 1
    • 2
  • Shunsuke Kagawa
    • 2
  • Toshiyoshi Fujiwara
    • 2
    Email author
  1. 1.Center for Innovative Clinical MedicineOkayama University HospitalOkayamaJapan
  2. 2.Department of Gastroenterological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan

Personalised recommendations