• Sergey Revnivykh
  • Alexey Bolkunov
  • Alexander Serdyukov
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SHB)


The Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS ) is a global navigation satellite system developed by the Russian Federation. Similar to its US counterpart, the NAVSTAR global positioning system (GPS ), GLONASS provides dual-frequency L-band navigation signals for civil and military navigation. Initiated in the 1980s, the system first achieved its full operational capability in 1995. Following a temporary degradation, the nominal constellation of 24 satellites was ultimately reestablished in 2011 and the system has been in continued service since then. This chapter describes the architecture and operations of GLONASS and discusses its current performance. In addition, the planned evolution of the space and ground segment are outlined.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Satellite Laser Range International GNSS Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Allan deviation


atomic frequency standard


Barker code


Bureau International de l’Heure


Bureau International des Poids et Mesures


binary phase-shift keying


code division multiple access


civil navigation message


cyclic redundancy check


Deutsches Zentrum für Luft- und Raumfahrt


European Space Agency


frequency division multiple access


Galileo In-Orbit Validation Element


Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)


GLONASS System Time


global navigation satellite system


Global Positioning System


International Civil Aviation Organization


interface control document


International Earth Rotation and Reference Systems Service


International GNSS Service


International Terrestrial Reference Frame


International Terrestrial Reference System


International Telecommunication Union


low Earth orbit


launch and early orbit phase


laser retro-reflector array


medium Earth orbit


Neuman-Hofman (code)


nuclear detection (payload)


position dilution of precision


pseudo-random noise


Russian Federal Space Agency


root mean square


System for Differential Corrections and Monitoring


signal-in-space range error


satellite laser ranging


Coordinated Universal Time


  1. 8.1
    N.L. Johnson: GLONASS spacecraft, GPS World 5(11), 51–58 (1994)Google Scholar
  2. 8.2
    V.V. Dvorkin, Y.I. Nosenko, Y.M. Urlichich, A.M. Finkel’shtein: The Russian global navigation satellite program, Her. Russ. Acad. Sci. 79(1), 7–13 (2009)CrossRefGoogle Scholar
  3. 8.3
    T.G. Anodina: The GLONASS System Technical Characteristics and Performance (International Civil Aviation Organization, Montreal, Canada 1988), Working Paper FANS/4-WP/75Google Scholar
  4. 8.4
    S.A. Dale, P. Daly: The Soviet Union’s GLONASS navigation satellites, IEEE Aerosp. Electron. Syst. Mag. 2(5), 13–17 (1987)CrossRefGoogle Scholar
  5. 8.5
    G.R. Lennen: The USSR’s GLONASS P-code-determination and initial results, ION GPS 1989, Colorado Springs (ION, Virginia 1989) pp. 77–83Google Scholar
  6. 8.6
    S.A. Dale, P. Daly, I.D. Kitching: Understanding signals from GLONASS navigation satellites, Int. J. Sat. Commun. 7(1), 11–22 (1989)CrossRefGoogle Scholar
  7. 8.7
    Global Navigation Satellite System GLONASS – Interface Control Document, v5.1, (Russian Institute of Space Device Engineering, Moscow, 2008)Google Scholar
  8. 8.8
    Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povaliaev, S. Karutin: GLONASS modernization, ION GNSS 2011, Portland (ION, Virginia 2010) pp. 3125–3128Google Scholar
  9. 8.9
    V. Putin: On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation, Presidental Decree No. 638, Kremlin, Moscow (2007)Google Scholar
  10. 8.10
    T. Mirgorodskaya: GLONASS and critical infrastructure, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group A, Prague (UNOOSA, Vienna 2014)Google Scholar
  11. 8.11
    N. Zarraoa, W. Mai, E. Sardon, A. Jungstand: Preliminary evaluation of the Russian GLONASS system as a potential geodetic tool, J. Geod. 72(6), 356–363 (1998)CrossRefGoogle Scholar
  12. 8.12
    P. Willis, J. Slater, G. Beutler, W. Gurtner, C. Noll, R. Weber, R.E. Neilan, G. Hein: The IGEX-98-campaign: Highlights and perspective. In: Geodesy Beyond 2000, International Association of Geodesy Symposia, Vol. 121, ed. by K.-P. Schwarz (Springer, Berlin 2000) pp. 22–25CrossRefGoogle Scholar
  13. 8.13
    R. Weber, J.A. Slater, E. Fragner, V. Glotov, H. Habrich, I. Romero, S. Schaer: Precise GLONASS orbit determination within the IGS/IGLOS–pilot project, Adv. Space Res. 36(3), 369–375 (2005)CrossRefGoogle Scholar
  14. 8.14
    J.G. Walker: Satellite constellations, J. Br. Interplanet. Soc. 37, 559–572 (1984)Google Scholar
  15. 8.15
    Parametry Zemli 1990 goda. Version PZ-90.11 (Earth Model PZ-90.11; In Russian). Military Topography Agency of the General Staff of the Armed Forces of the Russian Federation (Moscow 2014)
  16. 8.16
    S. Feairheller, J. Purvis, R. Clark: The Russian GLONASS system. In: Understanding GPS – Principles and Applications, ed. by E.D. Kaplan (Arctech House, Boston, London 1996) pp. 439–465Google Scholar
  17. 8.17
    V. Vdovin, A. Dorofeeva: Global geocentric coordinate system of the Russian federation, Proc. 7th Meet. Int. Comm. GNSS (ICG), Work. Group D, Bejing (UNOOSA, Vienna 2012)Google Scholar
  18. 8.18
    A.N. Zueva, E.V. Novikov, D.I. Pleshakov, I.V. Gusev: System of geodetic parameters parametry zemli 1990 PZ-90.11, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group D, Prague (UNOOSA, Vienna 2014)Google Scholar
  19. 8.19
    P.N. Misra, R.I. Abbot, E.M. Gaposcbkin: Integrated Use of GPS and GLONASS: Transformation between WGS 84 and PZ-90, ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 307–314Google Scholar
  20. 8.20
    U. Rossbach, H. Habrich, N. Zarraoa: Transformation Parameters between PZ-90 and WGS 84, ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 279–285Google Scholar
  21. 8.21
    C. Boucher, Z. Altamimi: ITRS, PZ-90 and WGS 84: Current realizations and the related transformation parameters, J. Geod. 75(11), 613–619 (2001)CrossRefGoogle Scholar
  22. 8.22
    S.G. Revnivykh: GLONASS status and progress, Proc. 47th CGSIC Meet., Fort Worth (CGSIC, Alexandria 2007)Google Scholar
  23. 8.23
    Global Navigation Satellite System and Global Positioning System: Coordinate Systems, Methods of Transformations for Determinated Points Coordinate; STB GOST Standard 51794-2008 (Federalnoje agentstwo po technitscheskomu regulirowaniju i metrologii, Moscow, 2008) in RussianGoogle Scholar
  24. 8.24
    Yu. Domnin, B. Gaigerov, N. Koshelyaevsky, S. Poushkin, F. Rusin, V. Tatarenkov, G. Yolkin: Fifty years of atomic time-keeping at VNIIFTRI, Metrologia 42(3), S55–S63 (2005)CrossRefGoogle Scholar
  25. 8.25
    I. Blinov, Y. Domnin, S. Donchenko, N. Koshelyaevsky, V. Kostromin: Progress at the state time and frequency standard of Russia, European Frequency and Time Forum (EFTF) 2012, Gothenburg (2012) pp. 144–147CrossRefGoogle Scholar
  26. 8.26
    W. Lewandowski, E.F. Arias: GNSS times and UTC, Metrologia 48(4), S219–S224 (2011)CrossRefGoogle Scholar
  27. 8.27
    A. Shchipunov: Generating and transferring the national time scale in GLONASS, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3950–3962Google Scholar
  28. 8.28
    A.V. Druzhin, V. Palchikov: Current state and perspectives of UTC(SU) broadcast by GLONASS, Proc. 9th Meet. Int. Comm. GNSS (ICG), Prague (UNOOSA, Vienna 2014) pp. 1–9Google Scholar
  29. 8.29
    A. Bolkonov: GLONASS open service performance parameters standard and GNSS open service performance parameters template status, Proc. 9th Meet. Int. Comm. GNSS (ICG), Work. Group A, Prague (UNOOSA, Vienna 2014)Google Scholar
  30. 8.30
    R.B. Langley: GLONASS: Review and update, GPS World 8(11), 51–58 (1994)Google Scholar
  31. 8.31
    Protection criteria used for radio astronomical observations, Recommendation RA 769, rev. 2, May 2003 (ITU, 2003)
  32. 8.32
    J. Galt: Interference with Astronomical Observations of OH Masers from the Soviet Union’s GLONASS satellites. In: IAU Colloq. 112 Light Pollution, Radio Interference, and Space Debris, ed. by D.L. Crawford (IAU, Paris 1991) pp. 213–221Google Scholar
  33. 8.33
    J.A. Ávila Rodríguez: On Generalized Signal Waveforms for Satellite Navigation, Ph.D. Thesis (Univ. der Bundeswehr, Neubiberg 2008)Google Scholar
  34. 8.34
    B.A. Stein: PRN codes for GPS/GLONASS: A comparison, ION NTM 1990, San Diego (ION, Virginia 1990) pp. 31–35Google Scholar
  35. 8.35
    J. Beser, J. Danaher: The 3S navigation R-100 family of integrated GPS/GLONASS receivers: Description and performance results, ION NTM 1993, San Francisco (ION, Virginia 1993) pp. 25–45Google Scholar
  36. 8.36
    P. Daly, S. Riley: GLONASS P-code data message, ION NTM 1994, San Diego (ION, Virginia 1994) pp. 195–202Google Scholar
  37. 8.37
    S. Zaminpardaz, P.J.G. Teunissen, N. Nadarajah: GLONASS CDMA L3 ambiguity resolution and positioning, GPS Solut. (2016) doi: 10.1007/s10291-016-0544-y
  38. 8.38
    Y. Urlichich, V. Subbotin, G. Stupak, V. Dvorkin, A. Povaliaev, S. Karutin: GLONASS developing strategy, ION GNSS 2010, Portland (ION, Virginia 2010) pp. 1566–1571Google Scholar
  39. 8.39
    S. Karutin: GLONASS Signals and Augmentations, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3878–3911Google Scholar
  40. 8.40
    T. Kasami: Weight Distribution Formula for Some Class of Cyclic Codes, Tech. Rep. R285 (Univ. Illinois, Illinois 1966) pp. 1–24Google Scholar
  41. 8.41
    T. Helleseth, P.V. Kumar: Pseudonoise sequences. In: The Mobile Communications Handbook, ed. by J.D. Gibson (CRC, Boca Raton 1999) pp. 237–252Google Scholar
  42. 8.42
    S. Thoelert, S. Erker, J. Furthner, M. Meurer, G.X. Gao, L. Heng, T. Walter, P. Enge: First signal in space analysis of GLONASS K-1, ION GNSS 2011, Portland (ION, Virginia 2011) pp. 3076–3082Google Scholar
  43. 8.43
    A.A. Povalyaev: GLONASS navigation message format for flexible row structure, ION GNSS 2013, Nashville (ION,, Virginia 2013) pp. 972–974Google Scholar
  44. 8.44
    G.M. Appleby: Orbit determinations of the lageos and etalon satellites – A comparison of geodetic results and orbital evolution of the etalons, dynamics and astrometry of natural and artificial celestial bodies, Proc. Conf. Astrom. Celest. Mech., Poznan 1993, ed. by K. Kurzynska, F. Barlier, P.K. Seidelmann, I. Wyrtrzyszczak (IAU, Pairs 1994)Google Scholar
  45. 8.45
    T. Otsubo, G.M. Appleby, P. Gibbs: GLONASS laser ranging accuracy with satellite signature effect, Surv. Geophys. 22(5/6), 509–516 (2001)CrossRefGoogle Scholar
  46. 8.46
    Y.G. Gouzhva, A.G. Gevorkyan, P.P. Bogdanov: Accuracy estimation of GLONASS satellite oscillators, Proc. 46th Freq. Control Symp., Hershey (1992) pp. 306–309Google Scholar
  47. 8.47
    A.B. Bassevich, P.P. Bogdanov, A.G. Gevorkyan, A.E. Tyulyakov: GLONASS onboard time/frequency standards: Ten years of operation, Proc. 28th Ann. PTTI Meet., Reston (DTIC, Fort Belvoir 1996) pp. 455–462Google Scholar
  48. 8.48
    R. Fatkulin, V. Kossenko, S. Storozhev, V. Zvonar, V. Chebotarev: GLONASS space segment: Satellite constellation, GLONASS-M and GLONASS-K spacecraft, main features, ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 3912–3930Google Scholar
  49. 8.49
    A. Bolkunov, I. Zolkin, E. Ignatovich, A. Schekutiev: Intersatellite links as critical element of advanced satellite navigation technologies, Sci. Tech. J. ‘Polyot’ (Flight) 4, 29–33 (2013)Google Scholar
  50. 8.50
    A. Chubykin, S. Dmitriev, V. Shargorodskiy, V. Sumerin: Intersatellite laser navigating link system, Proc. WPLTN Tech. Workshop One-Way Two-Way SLR GNSS Co-located RF Tech., St.Petersburg (2012) pp. 1–18Google Scholar
  51. 8.51
    V.D. Shargorodsky, V.V. Pasynkov, M.A. Sadovnikov, A.A. Chubykin: Laser GLONASS: Era of extended precision, GLONASS Herald 14, 22–26 (2013)Google Scholar
  52. 8.52
    G.M. Polischuk, V.I. Kozlov, V.V. Ilitchov, A.G. Kozlov, V.A. Bartenev, V.E. Kossenko, N.A. Anphimov, S.G. Revnivykh, S.B. Pisarev, A.E. Tyulyakov: The global navigation satellite system GLONASS: Development and usage in the 21st century, Proc. 34th PTTI Meet. 2002, Reston (DTIC, Fort Belvoir 2002) pp. 39–50Google Scholar
  53. 8.53
    D.S. Ilcev: Cospas–Sarsat LEO and GEO: Satellite distress and safety systems (SDSS), Int. J. Satell. Commun. Netw. 25(6), 559–573 (2007)CrossRefGoogle Scholar
  54. 8.54
    Th. Pirard: Space centres-launch sites: The USSR. In: The Cambridge Encyclopedia of Space, ed. by M. Rycroft (Cambridge Univ. Press, Cambridge 1990) pp. 126–127Google Scholar
  55. 8.55
    Y. Tchourianov: Baikonur – The Advent of a New Century (Voennyi parad, Moscow 2005)Google Scholar
  56. 8.56
    S. Revnivykh: GLONASS status and progress, Proc. CGSIC Meet., Savannah (2008)Google Scholar
  57. 8.57
    V. Burmistrov, A. Fedotov, N. Parkhomenko, V. Pasinkov, V. Shargorodsky, V. Vasiliev: The Russian laser tracking network, Proc. 15th ILRS Workshop 2006, Canberra (2006) pp. 1–3Google Scholar
  58. 8.58
    G. Stupak: SDCM status and plans, Proc. 7th Meet. Int. Comm. GNSS (ICG), Bejing (UNOOSA, Vienna 2012) pp. 1–15Google Scholar
  59. 8.59
    Russian System of Differentional Correction and Monitoring (SDCM):
  60. 8.60
    V.V. Dvorkin, S.N. Karutin: Construction of a system for precise determination of the position of users of global navigation satellite systems, Meas. Tech. 54(5), 517–523 (2011)CrossRefGoogle Scholar
  61. 8.61
    M.A. Sadovnikov, V.D. Shargorodskiy: Stages of development of stations, networks and SLR usage methods for global space geodetic and navigation systems in Russia, Proc 19th ILRS Workshop 2014, Annapolis (2014) pp. 1–23Google Scholar
  62. 8.62
    Positioning, Navigation and Timing Information and Analysis Centre, GLONASS system status information:
  63. 8.63
    A.Y. Suslov, E.V. Titov, A.A. Fedotov, V.D. Shargorodskiy: System for high-accuracy determination of ephemeris and time corrections (SVOEVP) GLONASS, Proc. WPLTN Tech. Workshop One-Way Two-Way SLR GNSS Co-located RF Tech., St.Petersburg (2012) pp. 1–18Google Scholar
  64. 8.64
    GLONASS navigation performance information:
  65. 8.65
    J.M. Dow, R.E. Neilan, C. Rizos: The International GNSS Service in a changing landscape of global navigation satellite systems, J. Geod. 83(3/4), 191–198 (2009)CrossRefGoogle Scholar
  66. 8.66
    O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)CrossRefGoogle Scholar
  67. 8.67
    L. Heng, G.X. Gao, T. Walter, P. Enge: Statistical characterization of GLONASS broadcast clock errors and signal-in-space errors, ION ITM 2012, Newport Beach (ION, Virginia 2012) pp. 1697–1707Google Scholar
  68. 8.68
    M. Fritsche, K. Sośnica, C.J. Rodríguez-Solano, P. Steigenberger, K. Wang, R. Dietrich, R. Dach, U. Hugentobler, M. Rothacher: Homogeneous reprocessing of GPS, GLONASS and SLR observations, J. Geod. 88(7), 625–642 (2014)CrossRefGoogle Scholar
  69. 8.69
    A. Hauschild, O. Montenbruck, P. Steigenberger: Short-term analysis of GNSS clocks, GPS Solutions 17(3), 295–307 (2013)CrossRefGoogle Scholar
  70. 8.70
    E. Griggs, E.R. Kursinski, D. Akos: Short-term GNSS satellite clock stability, Radio Sci. 50(8), 813–826 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sergey Revnivykh
    • 1
  • Alexey Bolkunov
    • 2
  • Alexander Serdyukov
    • 3
  • Oliver Montenbruck
    • 4
  1. 1.GLONASS Evolution DepartmentRESHETNEV’s Information Satellite Systems CoporationMoscowRussian Federation
  2. 2.PNT Information and Analysis CenterFederal Space Agency (Roscosmos)KorolyovRussian Federation
  3. 3.Central Scientific Research Institute for Machine Building, PNT Information and Analysis CenterFederal Space Agency (Roscosmos)KorolyovRussian Federation
  4. 4.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations