The Global Positioning System (GPS)

  • Christopher J. HegartyEmail author
Part of the Springer Handbooks book series (SHB)


This chapter presents an overview of the US Global Positioning System (GPS ), which became the first operational global navigation satellite system (GNSS ) core constellation when it was declared fully operational in 1995. First, the space segment is described, including key characteristics of the different satellite types. Then, an overview of the control segment is given, including its operations and evolution of capabilities. This is followed by an overview of the GPS signals, current and future, as well as a description of the navigation data content. Then, the time and coordinate systems used by GPS are described. The chapter is concluded with a brief description of services and performance.


Global Position System Global Navigation Satellite System Global Navigation Satellite System User Equipment Global Position System Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

architecture evolution plan


air force satellite control network


apogee kick motor


binary offset carrier


long code


moderate-length code


civil navigation message


cyclic redundancy check


control segment


Earth-centered inertial


evolved expendable launch vehicles


effective isotropic radiated power


US Federal Aviation Administration


forward error correction


global navigation satellite system


Global Positioning System


hand-over word


issue-of-data clock


issue-of-data ephemeris


International Terrestrial Reference Frame


Jet Propulsion Laboratory


Legacy Accuracy Improvement Initiative


legacy navigation message


master control station


medium Earth orbit


notice advisory to NAVSTAR users


National Geospatial-Intelligence Agency


navigation message correction table


nuclear detection (payload)


operational control system


next generation operational control segment of GPS


phase lock loop


precise positioning service


pseudo-random noise


right ascension of ascending node


radio frequency


root mean square


selective availability


satellite-based augmentation system


standard positioning service


space vehicle number


space vehicle


telemetry (word)


ultra-high frequency


United States Naval Observatory


Coordinated Universal Time


Wide Area Augmentation System


wide area GPS enhancement


World Geodetic System


  1. 7.1
    B.W. Parkinson, S.W. Gilbert: NAVSTAR: Global positioning system – Ten years later, Proc. IEEE 71(10), 1177–1186 (1983)CrossRefGoogle Scholar
  2. 7.2
    B.W. Parkinson, J.J. Spilker Jr.: Global Positioning System: Theory and Applications, Vol. I (American Institute of Aeronautics and Astronautics, Washington 1996)CrossRefGoogle Scholar
  3. 7.3
    E.D. Kaplan, C.J. Hegarty: Understanding GPS – Principles and Applications, 2nd edn. (Artech House, Boston/London 2006)Google Scholar
  4. 7.4
    P. Misra, P. Enge: Global Positioning System – Signals, Measurements and Performance, Vol. 2 (Ganga Jamuna, Lincoln 2011)Google Scholar
  5. 7.5
    Global Positioning System Standard Positioning Service Performance Standard, 4th edn. (US Department of Defense, Washington 2008)Google Scholar
  6. 7.6
    G.B. Green, P.D. Massatt, N.W. Rhodus: The GPS 21 primary satellite constellation, Navigation 36, 9–24 (1989)CrossRefGoogle Scholar
  7. 7.7
    A.B. Jenkin, R.A. Gick: Collision risk posed to the global positioning system by disposal orbit instability, J. Spacecr. Rocket. 39(4), 532–539 (2002)CrossRefGoogle Scholar
  8. 7.8
    D.M. Galvin: History of the GPS space segment from block I to the new millennium, Proc. ION GPS 1999, Nashville (ION, Virginia 1999) pp. 1843–1854Google Scholar
  9. 7.9
    L.A. Mallette, P. Rochat, J. White: Historical review of atomic frequency standards used in space systems – 10 year update, Proc. 38th Annu. PTTI Meet., Washington DC (2006)Google Scholar
  10. 7.10
    F.M. Czopek, S. Shollenberger: Description and performance of the GPS block I and II L-band antenna and link budget, Proc. ION GPS 1993, Salt Lake City, UT (ION,1993) pp. 37–43Google Scholar
  11. 7.11
    K. Kiser, S.H. Vaughan: GPS IIR joins the GPS constellation, Proc. ION GPS, Nashville, TN (ION, Virginia 1998) pp. 1915–1923Google Scholar
  12. 7.12
    T. Hartman, L.R. Boyd, D. Koster, J.A. Rajan, C.J. Harvey: Modernizing the GPS block IIR spacecraft, Proc. ION GPS, Salt Lake City (ION, Virginia 2000) pp. 2115–2121Google Scholar
  13. 7.13
    W. Marquis, D. Reigh: On-orbit performance of the improved GPS block IIR antenna panel, Proc. ION GNSS, Long Beach (ION, Virginia 2005) pp. 2418–2426Google Scholar
  14. 7.14
    J.A. Rajan, J.A. Tracy: GPS IIR-M: Modernizing the signal-in-space, Proc. ION NTM, Anaheim (2003) pp. 484–493Google Scholar
  15. 7.15
    S. Ericson, K. Shallberg, C. Edgar: Characterization and simulation of SVN49 (PRN01) elevation dependent measurement biases, Proc. ION ITM, San Diego (ION, Virginia 2010) pp. 963–974Google Scholar
  16. 7.16
    S.C. Fisher, K. Ghassemi: GPS IIF – The next generation, Proc. IEEE 87(1), 24–47 (1999)CrossRefGoogle Scholar
  17. 7.17
    M. Braschak, H. Brown Jr., J. Carberry, T. Grant, G. Hatten, R. Patocka, E. Watts: GPS IIF satellite overview, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 753–770Google Scholar
  18. 7.18
    W. Marquis, S. Michael: GPS III – Bringing new capabilities to the global community, Inside GNSS 6(5), 34–48 (2011)Google Scholar
  19. 7.19
    GPS IIR-21 (M), Mission Book (United Launch Alliance, Littleton, Colorado 2009)
  20. 7.20
    Y.E. Bar-Sever: A new model for GPS yaw attitude, J. Geod. 70(11), 714–723 (1996)CrossRefGoogle Scholar
  21. 7.21
    F. Dilssner: GPS IIF-1 satellite, antenna phase centre and attitude modelling, Inside GNSS 5(6), 59–64 (2010)Google Scholar
  22. 7.22
    J. Kouba: A simplified yaw-attitude model for eclipsing GPS satellites, GPS Solutions 13(1), 1–12 (2009)CrossRefGoogle Scholar
  23. 7.23
    S.S. Russell, J.H. Schaibly: Control segment and user performance, Navigation 25(2), 166–172 (1978)CrossRefGoogle Scholar
  24. 7.24
    J. Taylor: The GPS operational control system Kalman filter description and history, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 2329–2366Google Scholar
  25. 7.25
    T. Creel, A.J. Dorsey, Ph.J. Mendicki, J. Little, R.G. Mach, B.A. Renfro: New, improved GPS – The legacy accuracy improvement initiative, GPS World 17(3), 20–31 (2006)Google Scholar
  26. 7.26
    W. Bertiger, Y. Bar-Sever, N. Harvey, K. Miller, L. Romans, J. Weiss, L. Doyle, T. Solorzano, J. Petzinger, A. Stell: Next generation GPS ground control segment (OCX) navigation design, Proc. ION GNSS, Portland (ION, Virginia 2010) pp. 964–977Google Scholar
  27. 7.27
    W. Bertiger, Y. Bar-Sever, E. Bokor, M. Butala, A. Dorsey, J. Gross, N. Harvey, W. Lu, K. Miller, M. Miller, L. Romans, A. Sibthorpe, J. Weiss, M. Jones, J. Holden, A. Donigian, P. Saha: First orbit determination performance assessment for the OCX navigation software in an operational environment, Proc. ION GNSS, Nashville (ION, Virginia 2012)Google Scholar
  28. 7.28
    P. Collins, R. Langley, J. LaMance: Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation, Proc. ION 52nd Annu. Meet., Cambridge (ION, Virginia 1996) pp. 519–528Google Scholar
  29. 7.29
    D.D. McCarthy, G. Petit: IERS Conventions (2003) IERS Technical Note No. 36 (des Bundesamts für Kartographie und Geodäsie, Frankfurt 2004)Google Scholar
  30. 7.30
    B. Wiley, D. Craig, D. Manning, J. Novak, R. Taylor, L. Weingarth: NGA’s role in GPS, Proc. ION GPS, Fort Worth (ION, Virginia 2006) pp. 2111–2119Google Scholar
  31. 7.31
    C.H. Yinger, W.A. Feess, R. Di-Esposti, A. Chasko, B. Cosentino, B. Wilson, B. Wheaton: GPS satellite interfrequency biases, Proc. ION Annu. Meet., Cambridge (ION, Virginia 1999) pp. 347–354Google Scholar
  32. 7.32
    Navstar GPS Control Segment to User Support Community Interfaces (Global Positioning Systems Directorate, California 2010) ICD-GPS-240A, 12 Jan. 2010Google Scholar
  33. 7.33
    Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-200H, 24 Sep. 2013Google Scholar
  34. 7.34
    R. Gold: Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inf. Theory 13(4), 619–621 (1967)CrossRefGoogle Scholar
  35. 7.35
    B. Barker, J. Betz, J. Clark, J. Correia, J. Gillis, S. Lazar, K. Rehborn, J. Stratton: Overview of the GPS M code signal, Proc. ION NTM, Anaheim (ION, Virginia 2000) pp. 542–549Google Scholar
  36. 7.36
    R.D. Fontana, W. Cheung, T. Stansell: The new L2 civil signal, GPS World 12(9), 28–34 (2001)Google Scholar
  37. 7.37
    A.J. Van-Dierendonck, C.J. Hegarty: The new L5 civil GPS signal, GPS World 11(9), 64–72 (2000)Google Scholar
  38. 7.38
    Navstar GPS Space Segment/User Segment L5 Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-705D, 24 Sep. 2013Google Scholar
  39. 7.39
    J.J. Rushanan: The spreading and overlay codes for the L1C signal, Navigation 54(1), 43–51 (2007)CrossRefGoogle Scholar
  40. 7.40
    F. Neuman, L. Hofman: New pulse sequences with desirable correlation properties, Proc. Natl. Telem. Conf. (1971)Google Scholar
  41. 7.41
    J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2001)CrossRefGoogle Scholar
  42. 7.42
    H.L. van Trees: Detection, Estimation, and Modulation Theory – Part 1 (John Wiley, New York 2001)CrossRefGoogle Scholar
  43. 7.43
    J.W. Betz, M.A. Blanco, C.R. Cahn, P.A. Dafesh, C.J. Hegarty, K.W. Hudnut, V. Kasemsri, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, D. Sklar, T.A. Stansell, C.C. Wang, S.K. Yi: Descsription of the L1C signal, Proc. ION GNSS (2006) pp. 2080–2209Google Scholar
  44. 7.44
    Navstar GPS Space Segment/User Segment L1C Interfaces, Interface Specification (Global Positioning Systems Directorate, California 2013) IS-GPS-800D, 24 Sep. 2013Google Scholar
  45. 7.45
    G.W. Hein, J.A. Avila-Rodriguez, S. Wallner, A.R. Pratt, J. Owen, J.L. Issler, J.W. Betz, C.J. Hegarty, S. Lt: Lenahan, J.J. Rushanan, A.L. Kraay, T.A. Stansell: MBOC: The new optimized spreading modulation recommended for Galileo L1 OS and GPS L1C, Inside GNSS 1(4), 57–66 (2006)Google Scholar
  46. 7.46
    T. Walter, J. Blanch: Characterization of GNSS clock and ephemeris errors to support ARAIM, Proc. ION PNT 2015, Honolulu (ION, Virginia 2015) pp. 920–931Google Scholar
  47. 7.47
    S.T. Hutsell, G. Dieter, G. Hatten, T. Dass, J. Harvey: GPS clock/timescale management in the master control station, Proc. 35th Annu. PTTI Meet., San Diego (2003)Google Scholar
  48. 7.48
    S.T. Hutsell, B.K. Brottlund, C.A. Harris: How old is your GPS navigation message?, Proc. ION GPS, Salt Lake City (ION, Virginia 2000) pp. 2556–2561Google Scholar
  49. 7.49
    J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. 23(3), 325–331 (1987)CrossRefGoogle Scholar
  50. 7.50
    R. Kenneth, Brown Jr.: The theory of the GPS composite clock, Proc. ION GPS, Albuquerque (ION, Virgnia 1991) pp. 223–242Google Scholar
  51. 7.51
    T.E. Parker, D. Matsakis: Time and frequency dissemination: Advances in GPS transfer techniques, GPS World 15(11), 32–38 (2004), NovemberGoogle Scholar
  52. 7.52
    D.R. Hinson: Letter to Dr. A. Kotaite (Federal Aviation Administration, Washington 1994), Oct. 14Google Scholar
  53. 7.53
    M.C. Blakey: Letter to Dr. R. Kobeh (Federal Aviation Administration, Washington 2007), Sep. 10Google Scholar
  54. 7.54
    W.J. Clinton: Statement by the President Regarding the United States Decision to Stop Degrading Global Positioning System Accuracy (White House, Office of the Press Secretary, Washington D.C. 2000), May 1Google Scholar
  55. 7.55
    D. Perino: Statement by the Press Secretary (White House, Office of the Press Secretary, Washington D.C. 2007), Sep. 18Google Scholar
  56. 7.56
    K.T. Woo: Optimum semicodeless carrier-phase tracking of L2, Navigation 47(2), 82–99 (2000)CrossRefGoogle Scholar
  57. 7.57
    US Department of Defense: Preservation of Continuity for Semi-Codeless GPS Applications (US Federal Register, Washington DC 2008), 23 September Google Scholar
  58. 7.58
    2014 Federal Radionavigation Plan, (US Departments of Defense, Transportation, and Homeland Security, Washington D.C. 2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.The MITRE CoporationBedfordUSA

Personalised recommendations