Exploiting Solving Phases for Mixed-Integer Programs

Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

Modern MIP solving software incorporates dozens of auxiliary algorithmic components for supporting the branch-and-bound search in finding and improving solutions and in strengthening the relaxation. Intuitively, a dynamic solving strategy with an appropriate emphasis on different solving components and strategies is desirable during the search process. We propose an adaptive solver behavior that dynamically reacts on transitions between the three typical phases of a MIP solving process: The first phase objective is to find a feasible solution. During the second phase, a sequence of incumbent solutions gets constructed until the incumbent is eventually optimal. Proving optimality is the central objective of the remaining third phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase concept both with an exact recognition of the optimality of a solution, and provide heuristic alternatives to make use of the concept in practice.

References

  1. 1.
    Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007)Google Scholar
  2. 2.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 1–12 (2006)CrossRefGoogle Scholar
  3. 3.
    Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.: Experiments in mixed-integer programming. Math. Program. 1, 76–94 (1971)CrossRefGoogle Scholar
  4. 4.
    Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)Google Scholar
  5. 5.
    Fischetti, M., Lodi, A.: Heuristics in mixed integer programming. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2010). (Online publication)Google Scholar
  6. 6.
    Hendel, G.: Empirical analysis of solving phases in mixed integer programming. Master thesis, Technische Universität Berlin (2014)Google Scholar
  7. 7.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Program. Comput. 3(2), 103–163 (2011)CrossRefGoogle Scholar
  8. 8.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)CrossRefGoogle Scholar
  9. 9.
    Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999)CrossRefGoogle Scholar
  10. 10.
    Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding combinatorial optimization with UCT. In: Beldiceanu, N., Jussien, N., Pinson, E. (eds.) CPAIOR. Lecture Notes in Computer Science, vol. 7298, pp. 356–361. Springer, New York (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Konrad Zuse Zentrum für InformationstechnologieBerlinGermany

Personalised recommendations