Advertisement

Evaluation and Outcomes of Assistive Technologies in an Outpatient Setting: A Technical-Nursing Science Approach

  • Ulrike Lindwedel-Reime
  • Alexander Bejan
  • Beatrix Kirchhofer
  • Peter Koenig
Chapter

Abstract

As our society is ageing, the ability to live a self-determined life is growing more and more important for an ever increasing number of elderly people. Assistive technologies (AT) for outpatient use created by interdisciplinary research and development teams can be helpful assets in that regard. However, assistive systems or processes have to be engineered and evaluated with care in order to finally qualify as evidence-based products that will in turn be accepted by their intended users as well as the market. For that purpose, the involved researchers and developers coming from different areas of expertise—with potentially divergent focuses—need to be aware of and have an in-depth knowledge regarding assessment instruments that can be used to empirically evaluate the outcomes of AT as thoroughly as possible. In order to provide an overview of the relevant subject matter, this chapter initially introduces the reader into the basic nature of the concept “assistive technology” and the general idea of evaluation. In the next step, different models of the development and evaluation process relating to AT are examined from a technical perspective followed by an analysis of the evaluation process from the healthcare perspective. Ultimately, a synthesis of technology and evaluation from both angles of vision is proposed as a holistic approach and enriched by a number of scientifically tested assessment instruments usable for outpatient AT evaluation.

Keywords

Assistive technologies (AT) Research and development (R&D) Evaluation Assessment instruments Nursing 

References

  1. Aas IH (2001) A qualitative study of the organizational consequences of telemedicine. J Telemed Telecare 7(1):18–26CrossRefPubMedGoogle Scholar
  2. Aiken LH, Partician P (2000) Measuring organizational traits of hospitals: the revised Nursing Work Index. Nurs Res 49(3):146–153CrossRefPubMedGoogle Scholar
  3. Anttila H, Samuelsson K, Salminen A et al. (2012) Quality of evidence of assistive technology interventions for people with disability: an overview of systematic reviews. Technology and Disability 24(1):9–48. doi: 10.3233/TAD-2012-0332 Google Scholar
  4. Arthur D, Pang S, Wong T et al. (1999) Caring attributes, professional selfconcept and technological influences in a sample of Registered Nurses in eleven countries. Int J Nurs Stud 36(5):387–396Google Scholar
  5. Bartholomeyczik S, Halek M (eds) (2010) Assessmentinstrumente in der Pflege: Möglichkeiten und Grenzen. Schlütersche Verlagsgesellschaft, HannoverGoogle Scholar
  6. Behrens J, Görres S, Schaeffer D et al. (2012) Agenda Pflegeforschung für Deutschland. Halle (Salle). Available via DIALOG. http://www.agenda-pflegeforschung.de/AgendaPflegeforschung2012.pdf. Accessed 22 Aug 2016
  7. Beyer H, Holtzblatt K (1999) Contextual design. interactions 6(1):32–42CrossRefGoogle Scholar
  8. Bortz J, Schuster C (2010) Statistik für Human-und Sozialwissenschaftler. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  9. Brewster L, Mountain G, Wessels B et al. (2013) Factors affecting frontline staff acceptance of telehealth technologies: a mixed method systematic review. J Adv Nurs 70(1):21–33. doi: 10.1111/jan.12196
  10. Brown T, Wyatt J (2015) Design thinking for social innovation. Annual Review of Policy Design 3(1):1–10Google Scholar
  11. Cagney KA, Glass TA, Skarupski KA et al. (2009) Neighborhood-level cohesion and disorder: measurement and validation in two older adult urban populations. J Gerontol B Psychol Sci Soc Sci 64(3):415–424. doi: 10.1093/geronb/gbn041 CrossRefPubMedGoogle Scholar
  12. Connell J, Grealy C, Olver K et al. (2008) Comprehensive scoping study on the use of assistive technology by frail older people living in the community, urbis for the Department of Health and Ageing. Available via DIALOG. http://www.health.gov.au/internet/main/publishing.nsf/Content/1D7C7D1598A94CE1CA257BF0001959C2/$File/AssistiveTechnologyReport.pdf. Accessed 12 Feb 2014
  13. de Sousa Leite E, Rodrigues PT, Duarte de Farias MCA et al. (2016) Influence of assistive technology for the maintenance of the functionality of elderly people: an integrative review. International Archives of Medicine 2(21). doi: 10.3823/1892
  14. de Witte L, Knops H, Pyfers L et al. (eds) (1994) European service delivery system in rehabilitation technology: a comprehensive description of service delivery systems of 16 European countries. HEART (Horizontal European Activities of Rehabilitation Technology). iRv, Institute for Rehabilitation Research, Line C. HoensbroekGoogle Scholar
  15. Demers L, Fuhrer MJ, Jutai J et al. (2009) A conceptual framework of outcomes for caregivers of assistive technology users. Am J Phys Med Rehabil 88:645–655Google Scholar
  16. Dijcks BPJ, Wessels RD, de Vlieger SLM et al. (2006) KWAZO, a new instrument to assess the quality of service delivery in assistive technology provision. Disabil Rehabil 28(15):909–914. doi: 10.1080/09638280500301527 CrossRefPubMedGoogle Scholar
  17. Fänge A, Iwarsson S (1999) Physical housing environment: development of a self-assessment instrument. Can J Occup Ther 66(5):250–260CrossRefPubMedGoogle Scholar
  18. Fougeyrollas P, Noreau L, St. Michel G et al. (1999) Measurement of the Quality of the Environment Version2.0. RIPPH/INDCP, QuébecGoogle Scholar
  19. French SE, Lenton R, Walters V et al. (2000) An empirical evaluation of an expanded nursing stress scale. Nurs Meas 8(2):161–178Google Scholar
  20. Friedrich HF, Eigler H, Mandl H et al. (eds) (1997) Multimediale Lernumgebungen in der betrieblichen Weiterbildung. Luchterhand, Neuwied, Gestaltung, Lernstrategien und QualitätssicherungGoogle Scholar
  21. Fuhrer MJ, Jutai JW, Scherer MJ et al. (2003) A framework for the conceptual modelling of assistive technology device outcomes. Disabil Rehabil 25(22):1243–1251. doi: 10.1080/09638280310001596207 CrossRefPubMedGoogle Scholar
  22. Gray DB, Hollingsworth HH, Stark S et al. (2008) A subjective measure of environmental facilitators and barriers to participation for people with mobility limitations. Disabil Rehabil 30(6):434–457. doi: 10.1080/09638280701625377 CrossRefPubMedGoogle Scholar
  23. IDEA (1990) Individuals with disabilities education act of 1990. Available via DIALOG. http://uscode.house.gov/statutes/pl/101/476.pdf. Accessed 13 Jun 2016
  24. Intille SS (2013) Closing the evaluation gap in UbiHealth Research. IEEE Pervasive Comput 12(2):76–79. doi: 10.1109/MPRV.2013.28 CrossRefGoogle Scholar
  25. Isfort M, Rottländer R, Weidner F et al. (2016) Pflege-Thermometer 2016. Eine bundesweite Befragung von Leitungskräften zur Situation der Pflege und Patientenversorgung in der ambulanten Pflege. Herausgegeben von: Deutsches Institut für angewandte Pflegeforschung e.V. (dip), Köln. Available via DIALOG. http://www.dip.de/fileadmin/data/pdf/projekte/Endbericht_Pflege-Thermometer_2016-MI-2.pdf. Accessed 22 Aug 2016
  26. ISO (2010) ISO 9241-210: Ergonomie der Mensch-System-Interaktion: Teil 210: Prozess zur Gestaltung gebrauchstauglicher interaktiver Systeme. DIN Deutsches Institut für Normung, BerlinGoogle Scholar
  27. Kelley T (2007) The art of innovation: lessons in creativity from IDEO. America’s leading design firm. Crown Business, New York et alGoogle Scholar
  28. Keysor J, Jette A, Haley S (2005) Development of the home and community environment (HACE) instrument. J Rehabil Med 37(1):37–44. doi: 10.1080/16501970410014830 CrossRefPubMedGoogle Scholar
  29. Lalli M (1992) Urban-related identity: theory, measurement, and empirical findings. J Environ Psychol 12(4):285–303CrossRefGoogle Scholar
  30. Mahler C, Reuschenbach B (2011) Richtlinien zur Übersetzung von Assessmentinstrumenten. In: Reuschenbach B, Mahler C (eds) Pflegebezogene Assessmentinstrumente. Verlag Hans Huber, Bern, Internationales Handbuch für Pflegeforschung und Praxis, pp 101–110Google Scholar
  31. Martin S, Kelly G, Kernohan WG et al. (2008) Smart home technologies for health and social care support. Cochrane Database Syst Rev 8(4):CD006412. doi: 10.1002/14651858.CD006412.pub2
  32. Molenbroek J (2013) Putting older people at the heart of every ICT development. In: Mieczakowski A, Clarkson, P (eds) Ageing, adaption and accessibility: Time for the Inclusive Revolution! Engineering Design Centre. University of Cambridge, Cambridge, pp 41–43Google Scholar
  33. Norman DA (2013) The design of everyday things. Basic books, New YorkGoogle Scholar
  34. Nutbeam D, Bauman A (2006) Evaluation in a Nutshell. A practical guide to the evaluation of health promotion programs, McGraw-Hill, MaidenheadGoogle Scholar
  35. Reuschenbach B (2011) Gütekriterien. In: Reuschenbach B, Mahler C (eds) Pflegebezogene Assessmentinstrumente. Verlag Hans Huber, Bern, Internationales Handbuch für Pflegeforschung und Praxis, pp 57–80Google Scholar
  36. Robinson B, Thurnher M (1979) Taking care of aged parents: a family cycle transition. Gerontologist 19(6):586–593CrossRefPubMedGoogle Scholar
  37. Rosson MB, Carroll JM (2003) Scenario-based Design. In: Jacko JA, Sears A (eds) The human-computer interaction handbook. Lawrence Erlbaum Associates, New Jersey-London, Mahwah, pp 1032–1050Google Scholar
  38. Saelens BE, Sallis JF, Black JB et al. (2003) Neighborhood-based differences in physical activity: an environment scale evaluation. Am J Public Health 93(9):1552–1558CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sampson RJ, Raudenbush SW, Earls F (1997) Neighborhoods and violent crime: a multilevel study of collective efficacy. Science 277(5328):918–924CrossRefPubMedGoogle Scholar
  40. Stark S, Hollingsworth HH, Morgan KA et al. (2007) Development of a measure of receptivity of the physical environment. Disabil Rehabil 29(2):123–137. doi: 10.1080/09638280600731631 CrossRefPubMedGoogle Scholar
  41. Stockmann R, Meyer W (2014) Evaluation. Eine Einführung, 2nd edn. Barbara Budrich UTB, Opladen-TorontoGoogle Scholar
  42. Tervo-Heikkinen T, Kiviniemi V, Partanen P et al. (2009) Nurse staffing levels and nursing outcomes: a bayesian analysis of finnish-registered nurse survey data. J Nurs Manag 17(8):986–993. doi: 10.1111/j.1365-2834.2009.01020.x CrossRefPubMedGoogle Scholar
  43. Topo P (2009) Technology studies to meet the needs of people with dementia and their caregivers: a literature review. J Appl Gerontol 28(1):5–37. doi: 10.1177/0733464808324019 CrossRefGoogle Scholar
  44. Whiteneck GG, Harrison-Felix CL, Mellick DC et al. (2004) Quantifying environmental factors: a measure of physical, attitudinal, service, productivity, and policy barriers. Arch Phys Med Rehabil 85(8):1324–1335. doi: 10.1016/j.apmr.2003.09.027 CrossRefPubMedGoogle Scholar
  45. Zagler WL (2013) Rehabilitationstechnik—assistive technologie. In: Fialka-Moser V (ed) Kompendium Physikalische Medizin und Rehabilitation. Springer-Verlag, Wien, Diagnostische und therapeutische Konzepte, pp 245–258CrossRefGoogle Scholar
  46. Zarit SH, Orr NK, Zarit JM (1985) The hidden victims of alzheimer’s disease: families under stress. New York University Press, New YorkGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Ulrike Lindwedel-Reime
    • 1
  • Alexander Bejan
    • 1
  • Beatrix Kirchhofer
    • 1
  • Peter Koenig
    • 1
  1. 1.Faculty Health, Safety, SocietyFurtwangen UniversityFurtwangenGermany

Personalised recommendations