Advertisement

A Comprehensive Overview of Visual Design of Process Model Element Labels

  • Agnes KoschmiderEmail author
  • Kathrin Figl
  • Andreas Schoknecht
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 256)

Abstract

Process model element labels are critical for an appropriate association between a symbol instance in a model and the corresponding real world meaning. Disciplines, in which an efficient presentation of text labels is crucial (e.g., cartography) have continuously improved their visualization design techniques for labels since they serve as effective cognitive aids in problem solving. Despite the relevance of labels for information exploration, surprisingly little research has been undertaken on the visual design of element labels of business process models. This paper fills this gap and provides a comprehensive overview of visual design options for process model element labels. First, we summarize the findings existing in the diverse areas of literature relevant to visual display of process model element labels. Second, we analyze the status quo of visual design of element labels in common business process modeling tools indicating only little layouting support. Third, we give recommendations regarding the visual design of element labels. To our knowledge, this is the first comprehensive analysis of visual design of process model element labels.

Keywords

Information visualization Layout Process model Text labeling 

References

  1. 1.
    Moody, D.L.: The “physics” of notations: towards a scientific basis for constructing visual notations in software engineering. IEEE Trans. Software Eng. 35, 756–779 (2009)CrossRefGoogle Scholar
  2. 2.
    Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for point-feature label placement. ACM Trans. Graph. (TOG) 14, 203–232 (1995)CrossRefGoogle Scholar
  3. 3.
    Wagner, F., Wolff, A., Kapoor, V., Strijk, T.: Three rules suffice for good label placement. Algorithmica 30, 334–349 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: empirical insights and recommendations. Inf. Syst. 35, 467–482 (2010)CrossRefGoogle Scholar
  5. 5.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37, 443–459 (2012)CrossRefGoogle Scholar
  6. 6.
    Leopold, H., Eid-Sabbagh, R.-H., Mendling, J., Azevedo, L.G., Baião, F.A.: Detection of naming convention violations in process models for different languages. Decis. Support Syst. 56, 310–325 (2013)CrossRefGoogle Scholar
  7. 7.
    Koschmider, A., Ullrich, M., Heine, A., Oberweis, A.: Revising the vocabulary of business process element labels. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 69–83. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Binkley, D., Davis, M., Lawrie, D., Maletic, J.I., Morrell, C., Sharif, B.: The impact of identifier style on effort and comprehension. Empirical Softw. Eng. 18, 219–276 (2013)CrossRefGoogle Scholar
  9. 9.
    Deeb, R., Ooms, K., De Maeyer, P.: Typography in the eyes of Bertin, gender and expertise variation. Cartographic J. 49, 176–185 (2012)CrossRefGoogle Scholar
  10. 10.
    Moody, D.L., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of process models: empirical testing of a quality framework. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 380–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Tinker, M.A.: Legibility of Print. Iowa State University Press, Ames (1963)Google Scholar
  12. 12.
    Fisher, D.F.: Reading and visual search. Mem. Cogn. 3, 188–196 (1975)CrossRefGoogle Scholar
  13. 13.
    Sanocki, T., Dyson, M.C.: Letter processing and font information during reading: beyond distinctiveness, where vision meets design. Atten. Percept. Psychophys. 74, 132–145 (2012)CrossRefGoogle Scholar
  14. 14.
    Arditi, A., Cho, J.: Letter case and text legibility in normal and low vision. Vision. Res. 47, 2499–2505 (2007)CrossRefGoogle Scholar
  15. 15.
    Object Management Group: BPMN 2.0 by Example (2010)Google Scholar
  16. 16.
    Sheedy, J.E., Subbaram, M.V., Zimmerman, A.B., Hayes, J.R.: Text legibility and the letter superiority effect. Hum. Factors J. Hum. Factors Ergon. Soc. 47, 797–815 (2005)CrossRefGoogle Scholar
  17. 17.
    Hill, A., Scharff, L.: Readability of websites with various foreground/background color combinations, font types and word styles. In: Proceedings of 11th National Conference in Undergraduate Research, pp. 742–746 (1997)Google Scholar
  18. 18.
    Tullis, T.S., Boynton, J.L., Hersh, H.: Readability of fonts in the windows environment. In: Conference Companion on Human Factors in Computing Systems, pp. 127–128. ACM (1995)Google Scholar
  19. 19.
    Dijk, S.V., Kreveld, M.V., Strijk, T., Wolff, A.: Towards an evaluation of quality for names placement methods. Int. J. Geogr. Inf. Sci. 16, 641–661 (2002)CrossRefGoogle Scholar
  20. 20.
    Moody, D.L.: The art (and science) of diagramming: communicating effectively using diagrams (tutorial). In: IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE (2012)Google Scholar
  21. 21.
    New, B.: Reexamining the word length effect in visual word recognition: new evidence from the English Lexicon Project. Psychon. Bull. Rev. 13, 45–52 (2006)CrossRefGoogle Scholar
  22. 22.
    Kruger, R., Carpendale, S., Scott, S.D., Greenberg, S.: How people use orientation on tables: comprehension, coordination and communication. In: Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting Group Work, pp. 369–378. ACM (2003)Google Scholar
  23. 23.
    Tang, J.C.: Findings from observational studies of collaborative work. Int. J. Man Mach. Stud. 34, 143–160 (1991)CrossRefGoogle Scholar
  24. 24.
    Yu, D., Park, H., Gerold, D., Legge, G.E.: Comparing reading speed for horizontal and vertical English text. J. Vis. 10, 21 (2010)Google Scholar
  25. 25.
    Wigdor, D., Balakrishnan, R.: Empirical investigation into the effect of orientation on text readability in tabletop displays. In: Gellersen, H., Schmidt, K., Beaudouin-Lafon, M., Mackay, W. (eds.) ECSCW 2005, pp. 205–224. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Ling, J., van Schaik, P.: The influence of line spacing and text alignment on visual search of web pages. Displays 28, 60–67 (2007)CrossRefGoogle Scholar
  27. 27.
    Treisman, A., Souther, J.: Illusory words: The roles of attention and of top–down constraints in conjoining letters to form words. JExPH 12, 3 (1986)Google Scholar
  28. 28.
    Lohse, G.L.: A cognitive model for understanding graphical perception. Hum.-Comput. Interact. 8, 353–388 (1993)CrossRefGoogle Scholar
  29. 29.
    Hall, R.H., Hanna, P.: The impact of web page text-background colour combinations on readability, retention, aesthetics and behavioural intention. Behav. Inf. Technol. 23, 183–195 (2004)CrossRefGoogle Scholar
  30. 30.
    Reijers, H.A., Freytag, T., Mendling, J., Eckleder, A.: Syntax highlighting in business process models. Decis. Support Syst. 51, 339–349 (2011)CrossRefGoogle Scholar
  31. 31.
    Object Management Group: Business Process Model and Notation (BPMN) Version 2.0.2 (2013)Google Scholar
  32. 32.
    Imhof, E.: Positioning names on maps. Am. Cartographer 2, 128–144 (1975)CrossRefGoogle Scholar
  33. 33.
    Palmer, S.E.: Common region: a new principle of perceptual grouping. Cogn. Psychol. 24, 436–447 (1992)CrossRefGoogle Scholar
  34. 34.
    Palmer, S.E., Brooks, J.L., Nelson, R.: When does grouping happen? Acta Psychol. 114, 311–330 (2003)CrossRefGoogle Scholar
  35. 35.
    Mayer, R.E., Moreno, R.: Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38, 43–52 (2003)CrossRefGoogle Scholar
  36. 36.
    Florax, M., Ploetzner, R.: What contributes to the split-attention effect? The role of text segmentation, picture labelling, and spatial proximity. Learn. Instr. 20, 216–224 (2010)CrossRefGoogle Scholar
  37. 37.
    Rasinski, T.V.: The effects of cued phrase boundaries on reading performance: a review (1990)Google Scholar
  38. 38.
    Just, M.A., Carpenter, P.A.: A theory of reading: from eye fixations to comprehension. Psychol. Rev. 87, 329 (1980)CrossRefGoogle Scholar
  39. 39.
    Levasser, V., Macaruso, P., Palumbo, L.C., Shankweiler, D.: Syntactically cued text facilitates oral reading fluency in developing readers. APsy 27, 423–445 (2006)Google Scholar
  40. 40.
    Salama, A., Oflazer, K., Hagan, S.: Typesetting for improved readability using lexical and syntactic information. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pp. 719–724 (2013)Google Scholar
  41. 41.
    Figl, K., Mendling, J., Strembeck, M.: The influence of notational deficiencies on process model comprehension. J. Assoc. Inf. Syst. 14, 312–338 (2013)Google Scholar
  42. 42.
    Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of the BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  43. 43.
    La Rosa, M., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., van der Aalst, W.M.P.: Managing process model complexity via abstract syntax modifications. IEEE Trans. Industr. Inf. 7, 614–629 (2011)CrossRefGoogle Scholar
  44. 44.
    Leopold, H., Mendling, J., Reijers, H.A., La Rosa, M.: Simplifying process model abstraction: techniques for generating model names. Inf. Syst. 39, 134–151 (2014)CrossRefGoogle Scholar
  45. 45.
    Delfmann, P., Herwig, S., Lis, L., Stein, A.: Supporting distributed conceptual modelling through naming conventions-a tool-based linguistic approach. Enterp. Model. Inf. Syst. Architect. 4, 3–19 (2009)Google Scholar
  46. 46.
    Sinur, J., Hill, J.B.: Magic quadrant for business process management suites. Technical report, Gartner RAS Core Research (2010)Google Scholar
  47. 47.
    Koschmider, A., Fellmann, M., Schoknecht, A., Oberweis, A.: Analysis of process model reuse: where are we now, where should we go from here? Decis. Support Syst. 66, 9–19 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Agnes Koschmider
    • 1
    Email author
  • Kathrin Figl
    • 2
  • Andreas Schoknecht
    • 1
  1. 1.Institute of Applied Informatics and Formal Description MethodsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Information Systems and New MediaVienna University of Economics and BusinessViennaAustria

Personalised recommendations