Advertisement

Towards a Methodology for the Engineering of Event-Driven Process Applications

  • Anne BaumgraßEmail author
  • Mirela Botezatu
  • Claudio Di Ciccio
  • Remco Dijkman
  • Paul Grefen
  • Marcin Hewelt
  • Jan Mendling
  • Andreas Meyer
  • Shaya Pourmirza
  • Hagen Völzer
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 256)

Abstract

Successful applications of the Internet of Things such as smart cities, smart logistics, and predictive maintenance, build on observing and analyzing business-related objects in the real world for business process execution and monitoring. In this context, complex event processing is increasingly used to integrate events from sensors with events stemming from business process management systems. This paper describes a methodology to combine the areas and engineer an event-driven logistics processes application. Thereby, we describe the requirements, use cases and lessons learned to design and implement such an architecture.

Keywords

Event-driven process applications Business process management Architecture design Methodology Logistics 

References

  1. 1.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Luckham, D.C.: Event Processing for Business: Organizing the Real-Time Enterprise. Wiley, Hoboken (2011)Google Scholar
  3. 3.
    Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards the enhancement of business process monitoring for complex logistics chains. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM Workshops. LNBIP, vol. 171, pp. 305–317. Springer, Heidelberg (2013)Google Scholar
  4. 4.
    Business Continuity Institute: Supply Chain Resilience 2014 - An International Survey to Consider the Origin, Causes & Consequences of Supply Chain Disruption (2014)Google Scholar
  5. 5.
    Baumgrass, A., Di Ciccio, C., Dijkman, R., Hewelt, M., Mendling, J., Meyer, A., Pourmirza, S., Weske, M., Wong, T.: GET controller and UNICORN: event-driven process execution and monitoring in logistics. In: BPM Demo track, CEUR Workshop Proceedings (2015)Google Scholar
  6. 6.
    Treitl, et al.: Use Cases, Success Criteria and Usage Scenarios, Deliverable report 1.1, GET Service (2014)Google Scholar
  7. 7.
    Baumgrass, A., Dijkman, R., Grefen, P., Pourmirza, S., Voelzer, H., Weske, M.: A software architecture for transportation planning and monitoring in a collaborative network. In: Camarinha-Matos, L.M., Bénaben, F., Picard, W. (eds.) Risks and Resilience of Collaborative Networks. IFIP AICT, vol. 463. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  8. 8.
    Kruchten, P.: Architectural blueprints - the “4+ 1" view model of software architecture. Tutorial Proc. Tri-Ada 95, 540–555 (1995)CrossRefGoogle Scholar
  9. 9.
    Hollingsworth, D., Hampshire, U.: Workflow management coalition the workflow reference model. Workflow Manag. Coalition 68, 26 (1993)Google Scholar
  10. 10.
    Botezatu, M., Völzer, H.: Language and meta-model for transport processes and snippets. In: Deliverable D4.1, GET Service (2014)Google Scholar
  11. 11.
    Object Management Group: Business process model and notation (BPMN) v2.0 (2011)Google Scholar
  12. 12.
    Bernhardt, T., Vasseur, A.: Esper: Event Stream Processing and Correlation (2007)Google Scholar
  13. 13.
    Mendling, J., Reijers, H., van der Aalst, W.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  14. 14.
    Pourmirza, S., Dijkman, R.: A Survey of Orchestration Engines. In: Deliverable report 7.1, GET Service (2014)Google Scholar
  15. 15.
    Pourmirza, S., Dijkman, R., Grefen, P.: Switching parties in a collaboration at run-time. In: EDOC, pp. 136–141. IEEE (2014)Google Scholar
  16. 16.
    Rademakers, T.: Activiti in Action: Executable business processes in BPMN 2.0. Manning Publications, Shelter Island (2012)Google Scholar
  17. 17.
    Baumgrass, A., Breske, R., Cabanillas, C., Ciccio, C.D., Eid-Sabbagh, R., Hewelt, M., Meyer, A., Rogge-Solti, A.: Conceptual architecture specification of an information aggregation engine, Deliverable report 6.2, GET Service (2014)Google Scholar
  18. 18.
    Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  19. 19.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc, New York (1997). McGraw Hill series in computer sciencezbMATHGoogle Scholar
  20. 20.
    Baumgrass, A., Hewelt, M., Meyer, A., Raptopoulos, A., Selke, J., Wong, T.: Prototypical Implementation of the Information Aggregation Engine. In: Deliverable D6.3, GET Service, September 2014Google Scholar
  21. 21.
    Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anne Baumgraß
    • 1
    Email author
  • Mirela Botezatu
    • 2
  • Claudio Di Ciccio
    • 3
  • Remco Dijkman
    • 4
  • Paul Grefen
    • 4
  • Marcin Hewelt
    • 1
  • Jan Mendling
    • 3
  • Andreas Meyer
    • 1
  • Shaya Pourmirza
    • 4
  • Hagen Völzer
    • 2
  1. 1.Hasso-Plattner-InstitutUniversity of PotsdamPotsdamGermany
  2. 2.IBM Research – ZurichZurichSwitzerland
  3. 3.Institute for Information Business at WU ViennaViennaAustria
  4. 4.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations