Advertisement

Social-Data Driven Sales Processes in Local Clothing Retail Stores

  • Barbara KellerEmail author
  • Rainer Schmidt
  • Michael Möhring
  • Ralf-Christian Härting
  • Alfred Zimmermann
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 256)

Abstract

Local clothing retailers compete with online retailers but have difficulties to increase cross-selling revenues. Therefore, a data-driven sales process is conceptualized that uses data from social software in order to increase revenue. It identifies and tracks the customer using RFIDs in customer loyalty cards. By these means, social data can be used in all phases of the purchase and both for major and minor purchases. Individual product suggestions and offerings can be tailored. Local retailers are able to catch up with online retailers in their cross- and upselling revenues. In consequence, local retailers are able to stay competitive.

Keywords

Social BPM Retail Data driven Local retailers Social software Social data Sales processes Clothing retail store 

References

  1. [AsHu10]
    Asur, S., Huberman, B.A.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 492–499. IEEE (2010)Google Scholar
  2. [AuCY08]
    Au, K.-F., et al.: Fashion retail forecasting by evolutionary neural networks. Int. J. Prod. Econ. 114(2), 615–630 (2008)CrossRefGoogle Scholar
  3. [BaYY10]
    Bayraktar, A., et al.: Implementation of RFID technology for the differentiation of loyalty programs. J. Relat. Mark. 9(1), 30–42 (2010)Google Scholar
  4. [BDJK11]
    Bruno, G., et al.: Key challenges for enabling agile BPM with social software. J. Softw. Maintenance Evol. Res. Pract. 23(4), 297–326 (2011)MathSciNetCrossRefGoogle Scholar
  5. [BeKR03]
    Becker, J., et al.: Process Management: a guide for the design of business processes: with 83 figures and 34 tables. Springer Science & Business Media (2003)Google Scholar
  6. [Benk06]
    Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, New Haven (2006)Google Scholar
  7. [Berr95]
    Berry, L.L.: Relationship marketing of services—growing interest, emerging perspectives. J. Acad. Mark. Sci. 23(4), 236–245 (1995)CrossRefGoogle Scholar
  8. [BeSc04]
    Becker, J., Schütte, R.: Handelsinformationssysteme. MI Wirtschaftsbuch (2004)Google Scholar
  9. [ChBH06]
    Chae, M.-H., et al.: Pre-purchase and post-purchase satisfaction and fashion involvement of female tennis wear consumers. Int. J. Consum. Stud. 30(1), 25–33 (2006)MathSciNetCrossRefGoogle Scholar
  10. [ChDa97]
    Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM Sigmod Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  11. [ChPo03]
    Chen, I.J., Popovich, K.: Understanding customer relationship management (CRM) People, process and technology. Bus. Process Manage. J. 9(5), 672–688 (2003)CrossRefGoogle Scholar
  12. [Codd72]
    Codd, E.F.: Relational completeness of data base sublanguages. IBM Corporation (1972)Google Scholar
  13. [Dano00]
    Danova, T.: BEACONS: What They Are, How They Work, And Why Apple’s iBeacon Technology is Ahead of the Pack. http://uk.businessinsider.com/beacons-and-ibeacons-create-a-new-market-2013-12
  14. [Dave10]
    Davenport, T.: The New World of “Business Analytics.” International Institute for Analytics (2010)Google Scholar
  15. [Derh00]
    derhandel.de: Textilhandel: P&C überzeugt Testkäufer - Der Handel. http://www.derhandel.de/news/unternehmen/pages/Textilhandel-P%26C-ueberzeugt-Testkaeufer-1280.html
  16. [Dest13]
    Destatis: Volkswirtschaftliche Gesamtrechnungen Private Konsumausgaben und Verfügbares Einkommen (2013)Google Scholar
  17. [EGHJ10]
    Erol, S., et al.: Combining BPM and social software: contradiction or chance? J. Softw. Maintenance Evol. Res. Pract. 22(6–7), 449–476 (2010)CrossRefGoogle Scholar
  18. [FHBB11]
    Friedland, A., et al.: NoSQL: Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken. Carl Hanser Verlag GmbH & CO. KG (2011)Google Scholar
  19. [Fink02]
    Finkenzeller, K.: RFID-handbuch. Hanser München (2002)Google Scholar
  20. [Fish09]
    Fisher, T.: ROI in social media: a look at the arguments. J. Database Mark. Customer Strategy Manage. 16(3), 189–195 (2009)CrossRefGoogle Scholar
  21. [GGKN05]
    Gruhl, D., et al.: The predictive power of online chatter. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 78–87. ACM (2005)Google Scholar
  22. [Gran83]
    Granovetter, M.: The strength of weak ties: A network theory revisited. Sociol. Theory 1(1), 201–233 (1983)CrossRefGoogle Scholar
  23. [Hand13]
    Handelsdaten.de: Aktuelle Statistiken zum Textileinzelhandel in Deutschland. Handelsdaten.de (2013)Google Scholar
  24. [HMSR00]
    Härting, R.-C., et al.: What drives users to use CRM in a Public Cloud environment? – Insights from European Experts. In: Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS). IEEE, Kauai (forthcoming)Google Scholar
  25. [Holm98]
    Holmström, J.: Business process innovation in the supply chain–a case study of implementing vendor managed inventory. Eur. J. Purchasing Supply Manage. 4(2), 127–131 (1998)CrossRefGoogle Scholar
  26. [Hung05]
    Hung, L.: A personalized recommendation system based on product taxonomy for one-to-one marketing online. Expert Syst. Appl. 29(2), 383–392 (2005)CrossRefGoogle Scholar
  27. [Ibea00]
    ibeaconinsider: What is iBeacon? A Guide to iBeacons. http://www.ibeacon.com/what-is-ibeacon-a-guide-to-beacons/
  28. [JaSi02]
    Jain, D., Singh, S.S.: Customer lifetime value research in marketing: A review and future directions. J. Interact. Mark. 16(2), 34–46 (2002)CrossRefGoogle Scholar
  29. [KeBL13]
    Kemper, H.-G., et al.: An Integrated Business Intelligence Framework. In: Rausch, P., et al. (eds.) Business Intelligence and Performance Management, pp. 13–26. Springer, London (2013)CrossRefGoogle Scholar
  30. [KeHa06]
    Keck, M., Hahn, M.: Integration der Vertriebswege: Herausforderung im dynamischen Retail Banking. Springer DE (2006)Google Scholar
  31. [KnHa05]
    Knyrim, R., Haidinger, V.: RFID-Chips und Datenschutz. Österreichisches Recht der Wirtschaft. 23(1), 2–6 (2005)Google Scholar
  32. [KoLe69]
    Kotler, P., Levy, S.J.: Broadening the concept of marketing. J. Mark. 33, 10–15 (1969)CrossRefGoogle Scholar
  33. [KoPe07]
    Kolbe, H., Peseschk, S.: Wirtschaftlichkeitsanalyse des RFID-Einsatzes in einem Handelsunternehmen der Bekleidungsbranche. GI Jahrestagung (1), 99–102 (2007)Google Scholar
  34. [Lang05]
    Langheinrich, M.: Die Privatsphäre im Ubiquitous Computing—Datenschutzaspekte der RFID-Technologie. In: Fleisch, E., Mattern, F. (eds.) Das Internet der Dinge, pp. 329–362. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. [LLSH11]
    LaValle, S., et al.: Big data, analytics and the path from insights to value. MIT Sloan Manage. Rev. 52(2), 21–32 (2011)Google Scholar
  36. [Mada09]
    Madaan, K.V.S.: Fundamentals of Retailing. Tata McGraw-Hill Education, New Delhi (2009)Google Scholar
  37. [MaKO02]
    Mattila, H., et al.: Retail performance measures for seasonal fashion. J. Fashion Mark. Manage. Int. J. 6(4), 340–351 (2002)MathSciNetGoogle Scholar
  38. [Mcbr11]
    McBrearty, R.: The Future of Retail Customer Loyalty RFID Enables Breakthrough Shopping Experiences. Cisco Systems (2011)Google Scholar
  39. [MSHB14]
    Möhring, M., Schmidt, R., Härting, R.-C., Bär, F., Zimmermann, A.: Classification framework for context data from business processes. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 440–445. Springer, Heidelberg (2015)Google Scholar
  40. [Müll04]
    Müller, J.: Ist das Auslesen von RFID-Tags zulässig. Datenschutz und Datensicherheit (DuD) 28(5), 215 (2004)Google Scholar
  41. [Nega04]
    Negash, S.: Business intelligence. Commun. Assoc. Inf. Syst. 13(1), 54 (2004)Google Scholar
  42. [Oliv80]
    Oliver, R.L.: A cognitive model of the antecedents and consequences of satisfaction decisions. J. Mark. Res. 17, 460–469 (1980)CrossRefGoogle Scholar
  43. [Oliv93]
    Oliver, R.L.: Cognitive, affective, and attribute bases of the satisfaction response. J. Consum. Res. 20, 418–430 (1993)CrossRefGoogle Scholar
  44. [Robe06]
    Roberts, C.M.: Radio frequency identification (RFID). Comput. Secur. 25(1), 18–26 (2006)CrossRefGoogle Scholar
  45. [Schm12]
    Schmidt, R.: A Framework for the Support of Value Co-creation by Social Software. In: Daniel, F., et al. (eds.) Business Process Management Workshops, pp. 242–252. Springer, Berlin Heidelberg (2012)CrossRefGoogle Scholar
  46. [Schm13]
    Schmidt, R.: Social data for product innovation, marketing and customer relations. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 234–245. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  47. [ScNu09]
    Schmidt, R., Nurcan, S.: BPM and social software. In: Ardagna, D., et al. (eds.) Business Process Management Workshops, pp. 649–658. Springer, Berlin Heidelberg (2009)CrossRefGoogle Scholar
  48. [SiSM09]
    Silberer, G., et al.: Contacts between Retailers and Customers as a Basis for Customer Segmentation in Electronic Retail. Universitätsverlag Göttingen, 127 (2009)Google Scholar
  49. [SMHZ15]
    Schmidt, R., et al.: Leveraging textual information for improving decision-making in the business process lifecycle. In: Neves-Silva, R., et al. (eds.) Intelligent Decision Technologies, Sorrent (2015)Google Scholar
  50. [SMMP14]
    Schmidt, R., Möhring, M., Maier, S., Pietsch, J., Härting, R.-C.: Big data as strategic enabler - insights from central european enterprises. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 50–60. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  51. [SMZH14]
    Schmidt, R., et al.: Datenzentrierte Unternehmensarchitekturen im Bekleidungseinzelhandel. INFORMATIK 2014: Big Data - Komplexität meistern 44. Jahrestagung der Gesellschaft für lnformatik. p. (im Druck), Stuttgart (2014)Google Scholar
  52. [Stoc07]
    Stockton, M.L.: Using radio frequency identification with customer loyalty cards to detect and/or prevent theft and shoplifting. Google Patents (2007)Google Scholar
  53. [StSi10]
    Steinmann, S., Silberer, G.: Clustering Customer Contact Sequences-Results of a Customer Survey in Retailing. European Retail Research, pp. 97–120. Springer (2010)Google Scholar
  54. [SZMJ14]
    Schmidt, R., Zimmermann, A., Möhring, M., Jugel, D., Bär, F., Schweda, C.M.: Social-software-based support for enterprise architecture management processes. In: Fournier, F., Mendling, J. (eds.) BPM 2014 Workshops. LNBIP, vol. 202, pp. 452–462. Springer, Heidelberg (2015)Google Scholar
  55. [TaWi06]
    Tapscott, D., Williams, A.: Wikinomics: How Mass Collaboration Changes Everything (2006)Google Scholar
  56. [Tayl11]
    Taylor, F.W.: The Principles of Scientific Management, vol. 202. Harper, New York (1911)Google Scholar
  57. [Whit12]
    White, T.: Hadoop: The definitive guide. O’Reilly Media (2012)Google Scholar
  58. [Wieh00]
    Wiehr, H.: Gerry Weber rollt RFID aus: Ab 2010 ein RFID-Chip in jedem Kleidungsstück - CIO.de. http://www.cio.de/retailit/bestpractice/2216267/
  59. [WMKS14]
    Walsh, G., et al.: Preventive product returns management systems-a review and model. In: Proceedings of the 21st European Conference on Information Systems (ECIS), Tel Aviv, Israel (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Barbara Keller
    • 2
    Email author
  • Rainer Schmidt
    • 1
  • Michael Möhring
    • 2
  • Ralf-Christian Härting
    • 2
  • Alfred Zimmermann
    • 3
  1. 1.Hochschule MünchenMunichGermany
  2. 2.Hochschule AalenAalenGermany
  3. 3.Reutlingen UniversityReutlingenGermany

Personalised recommendations