Using Life Cycle Information in Process Discovery

  • Sander J. J. LeemansEmail author
  • Dirk Fahland
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 256)


Understanding the performance of business processes is an important part of any business process intelligence project. From historical information recorded in event logs, performance can be measured and visualized on a discovered process model. Thereby the accuracy of the measured performance, e.g., waiting time, greatly depends on (1) the availability of start and completion events for activities in the event log, i.e. transactional information, and (2) the ability to differentiate between subtle control flow aspects, e.g. concurrent and interleaved execution. Current process discovery algorithms either do not use activity life cycle information in a systematic way or cannot distinguish subtle control-flow aspects, leading to less accurate performance measurements. In this paper, we investigate the automatic discovery of process models from event logs, such that performance can be measured more accurately. We discuss ways of systematically treating life cycle information in process discovery and their implications. We introduce a process discovery technique that is able to handle life cycle data and that distinguishes concurrency and interleaving. Finally, we show that it can discover models and reliable performance information from event logs only.


Process mining Process discovery Performance measurement Rediscoverability Concurrency 


  1. 1.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. Formal Asp. Comput. 23(3), 333–363 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  3. 3.
    Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven University of Technology (2014)Google Scholar
  4. 4.
    Burattin, A., Sperduti, A.: Heuristics miner for time intervals. In: ESANN (2010)Google Scholar
  5. 5.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37, 654–676 (2012)CrossRefGoogle Scholar
  6. 6.
    van Dongen, B.: BPI Challenge 2012 Dataset (2012).
  7. 7.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Günther, C., Verbeek, H.: XES v2.0 (2014).
  9. 9.
    Günther, C., Rozinat, A.: Disco: discover your processes. In: CEUR Workshop Proceedings, vol. 940, pp. 40–44. (2012)Google Scholar
  10. 10.
    ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business Process Automation - YAWL and its Support Environment. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Linz, P.: An Introduction to Formal Languages and Automata. Jones & Bartlett Learning, Burlington (2011)zbMATHGoogle Scholar
  14. 14.
    Redlich, D., Molka, T., Gilani, W., Blair, G., Rashid, A.: Constructs competition miner: process control-flow discovery of BP-domain constructs. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 134–150. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Redlich, D., Molka, T., Gilani, W., Blair, G.S., Rashid, A.: Scalable dynamic business process discovery with the constructs competition miner. In: CEUR-WP, vol. 1293, 91–107 (2014)Google Scholar
  16. 16.
    Schimm, G.: Process miner - a tool for mining process schemes from event-based data. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 525–528. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Schimm, G.: Mining exact models of concurrent workflows. Comput. Ind. 53(3), 265–281 (2004)CrossRefGoogle Scholar
  18. 18.
    Senderovich, A., Leemans, S., Harel, S., Gal, A., Mandelbaum, A., van der Aalst, W.: Discovering queues from event logs with varying levels of information. BPI (2015, accepted)Google Scholar
  19. 19.
    Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Wen, L., Wang, J., van der Aalst, W., Huang, B., Sun, J.: A novel approach for process mining based on event types. JIIS 32(2), 163–190 (2009)Google Scholar
  21. 21.
    Wolffensperger, R.: Static and Dynamic Visualization of Quality and Performance Dimensions on Process Trees. Master’s thesis, Eindhoven University of Technology (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
    Email author
  • Dirk Fahland
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations