Advertisement

Brachytherapy

  • Amandeep Singh Taggar
  • Antonio L. Damato
  • Gil’ad N. Cohen
  • Laszlo Voros
  • Yoshiya Yamada
Chapter

Abstract

The word “brachy,” derived from Greek, means short. Brachytherapy is the placement of radioactive sources directly into a tumor. Placing radiation directly into a tumor has several important advantages. Firstly, a highly ablative dose of radiation is delivered within the tumor. Secondly, the inverse-square law, which describes radiation dose at distance from brachytherapy sources, results in tremendous dose differential that can be created within short distances between the tumor and normal tissues. Hence the normal tissue surrounding the tumor is spared from toxic effects of radiation. By placing radiation sources directly into the tumor, there is no need to enlarge the high-dose margin around the tumor to account for uncertainties regarding tumor or patient motion, unlike external beam radiation. In this chapter, we will describe various methods used to deliver brachytherapy treatment and summarize key brachytherapy series to highlight its use in clinical scenarios.

Keywords

Brachytherapy Low-dose rate Brain Malignant glioma Low-grade glioma Recurrent tumors Spinal brachytherapy 

References

  1. 1.
    Goldberg SW, London ES. Zur frage der beziehungen zwischen Becquerel-strahlen und hautaffectionen. Dermatol Zeitschr. 1903;10:457.CrossRefGoogle Scholar
  2. 2.
    Hirsch O. Die operative Behandlung von Hypophysentumoren nach endonasalen Methoden. Arch Laryngol Rhinol. 1912;26:529–686.Google Scholar
  3. 3.
    Frazier CH. The effects of radium emanations upon brain tumors. Surg Gynecol Obstet. 1920;31:236–9.Google Scholar
  4. 4.
    Cushing H. Intracranial tumors. Springfield, IL: Charles C Thomas; 1932.Google Scholar
  5. 5.
    Schulder M, Loeffler JS, Howes AE, et al. The radium bomb: Harvey Cushing and the interstitial irradiation of gliomas. J Neurosurg. 1996;84(3):530–2.Google Scholar
  6. 6.
    Sneed PK, Suh JH, Goetsch SJ, et al. A multi-institutional review of radiosurgery alone vs. radiosurgery with whole brain radiotherapy as the initial management of brain metastases. Int J Radiat Oncol Biol Phys. 2002;53(3):519–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Wallner KE, Galicich JH, Krol G, et al. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 1989;16(6):1405–9.Google Scholar
  8. 8.
    Haie-Meder C, Kramar A, Lambin P, et al. Analysis of complications in a prospective randomized trial comparing two brachytherapy low dose rates in cervical carcinoma. Int J Radiat Oncol Biol Phys. 1994;29(5):953–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Lambin P, Gerbaulet A, Kramar A, et al. Phase III trial comparing two low dose rates in brachytherapy of cervix carcinoma: report at two years. Int J Radiat Oncol Biol Phys. 1993;25(3):405–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Mazeron JJ, Crook JM. Effect of dose rate on local control and necrosis in the reirradiation of faucial arch squamous cell carcinomas with interstitial iridium 192. Int J Radiat Oncol Biol Phys. 1990;18(5):1275.CrossRefPubMedGoogle Scholar
  11. 11.
    Hall EJ, Brenner DJ. The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys. 1991;21(6):1403–14.CrossRefPubMedGoogle Scholar
  12. 12.
    Qi XS, Schultz CJ, Li XA. An estimation of radiobiologic parameters from clinical outcomes for radiation treatment planning of brain tumor. Int J Radiat Oncol Biol Phys. 2006;64(05):1570–80.Google Scholar
  13. 13.
    Jones B, Sanghera P. Estimation of radiobiologic parameters and equivalent radiation dose of cytotoxic chemotherapy in malignant glioma. Int J Radiat Oncol Biol Phys. 2007;68(2):441–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Brenner D, Armour E, Corry P, et al. Sublethal damage repair times for a late-responding tissue relevant to brachytherapy (and external-beam radiotherapy): implications for new brachytherapy protocols. Int J Radiat Oncol Biol Phys. 1998;41(1):135–8.Google Scholar
  15. 15.
    Butler WM, Bice WS, DeWerd LA, et al. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group. Med Phys. 2008;35(9):3860–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Butler WM, Dorsey AT, Nelson KR, et al. Quality assurance calibration of 125I rapid strand in a sterile environment. Int J Radiat Oncol Biol Phys. 1998;41(1):217–22.Google Scholar
  17. 17.
    Petr MJ, McPherson CM, Breneman JC, et al. Management of newly diagnosed single brain metastasis with surgical resection and permanent I-125 seeds without upfront whole brain radiotherapy. J Neurooncol. 2009;92(3):393–400.Google Scholar
  18. 18.
    Huang K, Sneed PK, Kunwar S, et al. Surgical resection and permanent iodine-125 brachytherapy for brain metastases. J Neurooncol. 2009;91(1):83–93.CrossRefPubMedGoogle Scholar
  19. 19.
    Darakchiev BJ, Albright RE, Breneman JC, et al. Safety and efficacy of permanent iodine-125 seed implants and carmustine wafers in patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(2):236–42.Google Scholar
  20. 20.
    Chen AM, Chang S, Pouliot J, et al. Phase I trial of gross total resection, permanent iodine-125 brachytherapy, and hyperfractionated radiotherapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2007;69(3):825–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Dagnew E, Kanski J, McDermott MW, et al. Management of newly diagnosed single brain metastasis using resection and permanent iodine-125 seeds without initial whole-brain radiotherapy: a two institution experience. Neurosurg Focus. 2007;22(3):E3.CrossRefPubMedGoogle Scholar
  22. 22.
    Larson DA, Suplica JM, Chang SM, et al. Permanent iodine 125 brachytherapy in patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol. 2004;6(2):119–26.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wernicke AG, Smith AW, Taube S, et al. Cesium-131 brachytherapy for recurrent brain metastases: durable salvage treatment for previously irradiated metastatic disease. J Neurosurg. 2017;126:1212–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Raleigh DR, Seymour ZA, Tomlin B, et al. Resection and brain brachytherapy with permanent iodine-125 sources for brain metastasis. J Neurosurg. 2017;126:1749–55.CrossRefPubMedGoogle Scholar
  25. 25.
    Brahimaj B, Lamba M, Breneman JC, et al. Iodine-125 seed migration within brain parenchyma after brachytherapy for brain metastasis: case report. J Neurosurg. 2016;125(5):1167–70.Google Scholar
  26. 26.
    Ruge MI, Suchorska B, Maarouf M, et al. Stereotactic 125Iodine brachytherapy for the treatment of singular brain metastases: closing a gap? Neurosurgery. 2011;68(5):1209–19.CrossRefPubMedGoogle Scholar
  27. 27.
    Ruge MI, Kickingereder P, Grau S, et al. Stereotactic biopsy combined with stereotactic (125)iodine brachytherapy for diagnosis and treatment of locally recurrent single brain metastases. J Neurooncol. 2011;105(1):109–18.Google Scholar
  28. 28.
    Suchorska B, Ruge M, Treuer H, et al. Stereotactic brachytherapy of low-grade cerebral glioma after tumor resection. Neuro Oncol. 2011;13(10):1133–42.Google Scholar
  29. 29.
    Korinthenberg R, Neuburger D, Trippel M, et al. Long-term results of brachytherapy with temporary iodine-125 seeds in children with low-grade gliomas. Int J Radiat Oncol Biol Phys. 2011;79(4):1131–8.Google Scholar
  30. 30.
    Schwarz SB, Thon N, Nikolajek K, et al. Iodine-125 brachytherapy for brain tumours--a review. Radiat Oncol. 2012;7:30.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koot RW, Maarouf M, Hulshof MC, et al. Brachytherapy: results of two different therapy strategies for patients with primary glioblastoma multiforme. Cancer. 2000;88(12):2796–802.CrossRefPubMedGoogle Scholar
  32. 32.
    Tatter SB, Shaw EG, Rosenblum ML, et al. An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg. 2003;99(2):297–303.CrossRefPubMedGoogle Scholar
  33. 33.
    Ansari SF, Moore RJ, Boaz JC, et al. Efficacy of phosphorus-32 brachytherapy without external-beam radiation for long-term tumor control in patients with craniopharyngioma. J Neurosurg Pediatr. 2016;17(4):439–45.Google Scholar
  34. 34.
    Folkert MR, Bilsky MH, Cohen GN, et al. Intraoperative and percutaneous iridium-192 high-dose-rate brachytherapy for previously irradiated lesions of the spine. Brachytherapy. 2013;12(5):449–56.CrossRefPubMedGoogle Scholar
  35. 35.
    Salazar OM, Rubin P, Feldstein ML, et al. High dose radiation therapy in the treatment of malignant gliomas: final report. Int J Radiat Oncol Biol Phys. 1979;5(10):1733–40.Google Scholar
  36. 36.
    Bleehen NM, Stenning SP. A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The Medical Research Council Brain Tumour Working Party. Br J Cancer. 1991;64(4):769–74.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Walker MD, Strike TA, Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys. 1979;5(10):1725–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Werner-Wasik M, Scott CB, Nelson DF, et al. Final report of a phase I/II trial of hyperfractionated and accelerated hyperfractionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Radiation Therapy Oncology Group Study 83-02. Cancer. 1996;77(8):1535–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Coughlin C, Scott C, Langer C, et al. Phase II, two-arm RTOG trial (94-11) of bischloroethyl-nitrosourea plus accelerated hyperfractionated radiotherapy (64.0 or 70.4 Gy) based on tumor volume (> 20 or < or = 20 cm(2), respectively) in the treatment of newly-diagnosed radiosurgery-ineligible glioblastoma multiforme patients. Int J Radiat Oncol Biol Phys. 2000;48(5):1351–8.Google Scholar
  40. 40.
    Piroth MD, Pinkawa M, Holy R, et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol. 2012;188(4):334–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Loeffler JS, Alexander E, Wen PY, et al. Results of stereotactic brachytherapy used in the initial management of patients with glioblastoma. J Natl Cancer Inst. 1990;82(24):1918–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Gutin PH, Prados MD, Phillips TL, et al. External irradiation followed by an interstitial high activity iodine-125 implant “boost” in the initial treatment of malignant gliomas: NCOG study 6G-82-2 gliomas: NCOG study 6H-82-2. Int J Radiat Oncol Biol Phys. 1991;21(3):601–6.Google Scholar
  43. 43.
    Prados MD, Gutin PH, Phillips TL, et al. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys. 1992;24(4):593–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Lucas GL, Luxton G, Cohen D, et al. Treatment results of stereotactic interstitial brachytherapy for primary and metastatic brain tumors. Int J Radiat Oncol Biol Phys. 1991;21(3):715–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Scharfen CO, Sneed PK, Wara WM, et al. High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys. 1992;24(4):583–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Malkin MG. Interstitial implant radiosurgery of brain tumors: radiobiology, indications, and results. In: Wiestler OD, Schlegel U, Schramm J, editors. Molecular neuro-oncology and its impact on the clinical management of brain tumors, Recent results in cancer research, vol. vol 135. Berlin: Springer; 1994.CrossRefGoogle Scholar
  47. 47.
    Wen PY, Alexander E, Black PM, et al. Long term results of stereotactic brachytherapy used in the initial treatment of patients with glioblastomas. Cancer. 1994;73(12):3029–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Fernandez PM, Zamorano L, Yakar D, et al. Permanent iodine-125 implants in the up-front treatment of malignant gliomas. Neurosurgery. 1995;36(3):467–73.Google Scholar
  49. 49.
    Laperriere NJ, Leung PM, McKenzie S, et al. Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys. 1998;41(5):1005–11.CrossRefPubMedGoogle Scholar
  50. 50.
    Videtic GM, Gaspar LE, Zamorano L, et al. Implant volume as a prognostic variable in brachytherapy decision-making for malignant gliomas stratified by the RTOG recursive partitioning analysis. Int J Radiat Oncol Biol Phys. 2001;51(4):963–8.Google Scholar
  51. 51.
    Selker RG, Shapiro WR, Burger P, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery. 2002;51(2):343.CrossRefPubMedGoogle Scholar
  52. 52.
    Welsh J, Sanan A, Gabayan AJ, et al. GliaSite brachytherapy boost as part of initial treatment of glioblastoma multiforme: a retrospective multi-institutional pilot study. Int J Radiat Oncol Biol Phys. 2007;68(1):159–65.CrossRefPubMedGoogle Scholar
  53. 53.
    Wernicke AG, Sherr DL, Schwartz TH, et al. Feasibility and safety of GliaSite brachytherapy in treatment of CNS tumors following neurosurgical resection. J Cancer Res Ther. 2010;6(1):65–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Waters JD, Rose B, Gonda DD, et al. Immediate post-operative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma. J Neurooncol. 2013;113(3):467–77.CrossRefPubMedGoogle Scholar
  55. 55.
    Kickingereder P, Hamisch C, Suchorska B, et al. Low-dose rate stereotactic iodine-125 brachytherapy for the treatment of inoperable primary and recurrent glioblastoma: single-center experience with 201 cases. J Neurooncol. 2014;120(3):615–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Siddiqi SN, Provias J, Laperriere N, et al. Effects of iodine-125 brachytherapy on the proliferative capacity and histopathological features of glioblastoma recurring after initial therapy. Neurosurgery. 1997;40(5):910.Google Scholar
  57. 57.
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.Google Scholar
  58. 58.
    Mundinger F, Braus DF, Krauss JK, et al. Long-term outcome of 89 low-grade brain-stem gliomas after interstitial radiation therapy. J Neurosurg. 1991;75(5):740–6.Google Scholar
  59. 59.
    Kreth FW, Faist M, Warnke PC, et al. Interstitial radiosurgery of low-grade gliomas. J Neurosurg. 1995;82(3):418–29.Google Scholar
  60. 60.
    Chuba PJ, Zamarano L, Hamre M, et al. Permanent I-125 brain stem implants in children. Childs Nerv Syst. 1998;14(10):570–7.Google Scholar
  61. 61.
    Kreth FW, Faist M, Grau S, et al. Interstitial 125I radiosurgery of supratentorial de novo WHO Grade 2 astrocytoma and oligoastrocytoma in adults: long-term results and prognostic factors. Cancer. 2006;106(6):1372–81.Google Scholar
  62. 62.
    Peraud A, Goetz C, Siefert A, et al. Interstitial iodine-125 radiosurgery alone or in combination with microsurgery for pediatric patients with eloquently located low-grade glioma: a pilot study. Childs Nerv Syst. 2007;23(1):39–46.Google Scholar
  63. 63.
    Schnell O, Schöller K, Ruge M, et al. Surgical resection plus stereotactic 125I brachytherapy in adult patients with eloquently located supratentorial WHO grade II glioma - feasibility and outcome of a combined local treatment concept. J Neurol. 2008;255(10):1495–502.Google Scholar
  64. 64.
    Ruge MI, Simon T, Suchorska B, et al. Stereotactic brachytherapy with iodine-125 seeds for the treatment of inoperable low-grade gliomas in children: long-term outcome. J Clin Oncol. 2011;29(31):4151–9.Google Scholar
  65. 65.
    Ruge MI, Kickingereder P, Simon T, et al. Stereotactic iodine-125 brachytherapy for treatment of inoperable focal brainstem gliomas of WHO grades I and II: feasibility and long-term outcome. J Neurooncol. 2012;109(2):273–83.Google Scholar
  66. 66.
    El Majdoub F, Elawady M, Blau T, et al. Intracranial ependymoma: long-term results in a series of 21 patients treated with stereotactic (125)iodine brachytherapy. PLoS One. 2012;7(11):e47266.Google Scholar
  67. 67.
    Ruge MI, Kickingereder P, Grau S, et al. Stereotactic iodine-125 brachytherapy for the treatment of WHO grades II and III gliomas located in the central sulcus region. Neuro Oncol. 2013;15(12):1721–31.Google Scholar
  68. 68.
    Lopez WO, Trippel M, Doostkam S, et al. Interstitial brachytherapy with iodine-125 seeds for low grade brain stem gliomas in adults: diagnostic and therapeutic intervention in a one-step procedure. Clin Neurol Neurosurg. 2013;115(8):1451–6.Google Scholar
  69. 69.
    Kunz M, Nachbichler SB, Ertl L, et al. Early treatment of complex located pediatric low-grade gliomas using iodine-125 brachytherapy alone or in combination with microsurgery. Cancer Med. 2016;5(3):442–53.Google Scholar
  70. 70.
    Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 7th ed. Philadelphia, PA: Wolters Kluwer; 2011.Google Scholar
  71. 71.
    Kreth FW, Thon N, Siefert A, et al. The place of interstitial brachytherapy and radiosurgery for low-grade gliomas. Adv Tech Stand Neurosurg. 2010;35:183–212.Google Scholar
  72. 72.
    Freeman CR, Farmer JP, Montes J. Low-grade astrocytomas in children: evolving management strategies. Int J Radiat Oncol Biol Phys. 1998;41(5):979–87.Google Scholar
  73. 73.
    Recinos PF, Sciubba DM, Jallo GI. Brainstem tumors: where are we today? Pediatr Neurosurg. 2007;43(3):192–201.Google Scholar
  74. 74.
    Sandri A, Sardi N, Genitori L, et al. Diffuse and focal brain stem tumors in childhood: prognostic factors and surgical outcome. Experience in a single institution. Childs Nerv Syst. 2006;22(9):1127–35.Google Scholar
  75. 75.
    Farmer JP, Montes JL, Freeman CR, et al. Brainstem gliomas. A 10-year institutional review. Pediatr Neurosurg. 2001;34(4):206–14.Google Scholar
  76. 76.
    Lesniak MS, Klem JM, Weingart J, et al. Surgical outcome following resection of contrast-enhanced pediatric brainstem gliomas. Pediatr Neurosurg. 2003;39(6):314–22.Google Scholar
  77. 77.
    Teo C, Siu TL. Radical resection of focal brainstem gliomas: is it worth doing? Childs Nerv Syst. 2008;24(11):1307–14.Google Scholar
  78. 78.
    Pollack IF, Gerszten PC, Martinez AJ, et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery. 1995;37(4):655.Google Scholar
  79. 79.
    Sneed PK, Russo C, Scharfen CO, et al. Long-term follow-up after high-activity 125I brachytherapy for pediatric brain tumors. Pediatr Neurosurg. 1996;24(6):314–22.Google Scholar
  80. 80.
    Gutin PH, Phillips TL, Wara WM, et al. Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg. 1984;60:61–8.Google Scholar
  81. 81.
    Gutin PH, Leibel SA, Wara WM, et al. Recurrent malignant gliomas: survival following interstitial brachytherapy with high-activity iodine-125 sources. J Neurosurg. 1987;67(6):864–73.Google Scholar
  82. 82.
    Willis BK, Heilbrun MP, Sapozink MD, et al. Stereotactic interstitial brachytherapy of malignant astrocytomas with remarks on postimplantation computed tomographic appearance. Neurosurgery. 1988;23(3):348–54.Google Scholar
  83. 83.
    Kitchen ND, Hughes SW, Taub NA, et al. Survival following interstitial brachytherapy for recurrent malignant glioma. J Neurooncol. 1994;18(1):33–9.Google Scholar
  84. 84.
    Bernstein M, Laperriere N, Glen J, et al. Brachytherapy for recurrent malignant astrocytoma. Int J Radiat Oncol Biol Phys. 1994;30(5):1213–7.Google Scholar
  85. 85.
    Chan TA, Weingart JD, Parisi M, et al. Treatment of recurrent glioblastoma multiforme with GliaSite brachytherapy. Int J Radiat Oncol Biol Phys. 2005;62(4):1133–9.Google Scholar
  86. 86.
    Gabayan AJ, Green SB, Sanan A, et al. GliaSite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery. 2006;58(4):701.Google Scholar
  87. 87.
    Schwartz C, Romagna A, Thon N, et al. Outcome and toxicity profile of salvage low-dose-rate iodine-125 stereotactic brachytherapy in recurrent high-grade gliomas. Acta Neurochir. 2015;157(10):1757.Google Scholar
  88. 88.
    Payne JT, St Clair WH, Given CA, et al. Double balloon GliaSite in the management of recurrent glioblastoma multiforme. South Med J. 2005;98(9):957–8.Google Scholar
  89. 89.
    Gobitti C, Borsatti E, Arcicasa M, et al. Treatment of recurrent high-grade gliomas with GliaSite brachytherapy: a prospective mono-institutional Italian experience. Tumori. 2011;97(5):614–9.Google Scholar
  90. 90.
    Patchell RA, Tibbs PA, Walsh JW, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.Google Scholar
  91. 91.
    Ostertag CB, Kreth FW. Interstitial iodine-125 radiosurgery for cerebral metastases. Br J Neurosurg. 1995;9(5):593–603.CrossRefPubMedGoogle Scholar
  92. 92.
    Bogart JA, Ungureanu C, Shihadeh E, et al. Resection and permanent I-125 brachytherapy without whole brain irradiation for solitary brain metastasis from non-small cell lung carcinoma. J Neurooncol. 1999;44(1):53–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Wernicke AG, Yondorf MZ, Peng L, et al. Phase I/II study of resection and intraoperative cesium-131 radioisotope brachytherapy in patients with newly diagnosed brain metastases. J Neurosurg. 2014;121(2):338–48.Google Scholar
  94. 94.
    Shi F, Zhang X, Wu K, et al. Metastatic malignant melanoma: computed tomography-guided 125I seed implantation treatment. Melanoma Res. 2014;24(2):137–43.Google Scholar
  95. 95.
    Dagnew E, Kanski J, McDermott MW, et al. Management of newly diagnosed single brain metastasis using resection and permanent iodine-125 seeds without initial whole-brain radiotherapy: a two-institution experience. Neurosurg Focus. 2007;22(3):1–3.Google Scholar
  96. 96.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.Google Scholar
  97. 97.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42–9.Google Scholar
  98. 98.
    Gutin PH, Leibel SA, Hosobuchi Y, et al. Brachytherapy of recurrent tumors of the skull base and spine with iodine-125 sources. Neurosurgery. 1987;20(6):938–45.Google Scholar
  99. 99.
    Kumar PP, Good RR, Skultety FM, et al. Local control of recurrent clival and sacral chordoma after interstitial irradiation with iodine-125: new techniques for treatment of recurrent or unresectable chordomas. Neurosurgery. 1988;22(3):479–83.Google Scholar
  100. 100.
    Armstrong JG, Fass DE, Bains M, et al. Paraspinal tumors: techniques and results of brachytherapy. Int J Radiat Oncol Biol Phys. 1991;20(4):787–90.Google Scholar
  101. 101.
    Hamilton AJ, Lulu B, Stea B, et al. The use of gold foil wrapping for radiation protection of the spinal cord for recurrent tumor therapy. Int J Radiat Oncol Biol Phys. 1995;32(2):507–11.Google Scholar
  102. 102.
    Rogers CL, Theodore N, Dickman CA, et al. Surgery and permanent 125I seed paraspinal brachytherapy for malignant tumors with spinal cord compression. Int J Radiat Oncol Biol Phys. 2002;54(2):505–13.Google Scholar
  103. 103.
    DeLaney TF, Chen GT, Mauceri TC, et al. Intraoperative dural irradiation by customized 192iridium and 90yttrium brachytherapy plaques. Int J Radiat Oncol Biol Phys. 2003;57(1):239–45.Google Scholar
  104. 104.
    Folkert MR, Bilsky MH, Cohen GN, et al. Local recurrence outcomes using the 32P intraoperative brachytherapy plaque in the management of malignant lesions of the spine involving the dura. Brachytherapy. 2015;14(2):202–8.Google Scholar
  105. 105.
    Folkert MR, Bilsky MH, Cohen GN, et al. Intraoperative 32P high-dose rate brachytherapy of the dura for recurrent primary and metastatic intracranial and spinal tumors. Neurosurgery. 2012;71(5):1003–10.Google Scholar
  106. 106.
    Ashamalla H, Cardoso E, Macedon M, et al. Phase I trial of vertebral intracavitary cement and samarium (VICS): novel technique for treatment of painful vertebral metastasis. Int J Radiat Oncol Biol Phys. 2009;75(3):836–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amandeep Singh Taggar
    • 1
    • 2
  • Antonio L. Damato
    • 3
  • Gil’ad N. Cohen
    • 3
  • Laszlo Voros
    • 3
  • Yoshiya Yamada
    • 4
  1. 1.Department of Radiation OncologySunnybrook Odette Cancer CenterTorontoCanada
  2. 2.Department of Radiation OncologyUniversity of TorontoTorontoCanada
  3. 3.Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations