Advertisement

Radiation Optic Neuropathy

  • Andrea L. H. Arnett
  • Kenneth Wing Merrell
Chapter

Abstract

Radiation-induced retinopathy and radiation-induced optic neuropathy (RION) are rare and disabling late-onset complications of ocular irradiation. Radiation-induced retinopathy is characterized by progressive, occlusive vasculopathy, leading to subsequent retinal inflammation, edema, ischemia, and neovascular proliferation. These changes ultimately lead to retinal hemorrhage, maculopathy, and gradual decline in visual acuity. In contrast, optic neuropathy involves the optic nerve or chiasm and may present with sudden onset of visual changes. Both can lead to profound and irreversible vision loss and substantial disability and are thus critically important to consider in the treatment of any intracranial or base of skull disease.

Keywords

Retina Optic nerve Optic chiasm Optic pathway Radiation-induced optic neuropathy Radiation-induced retinopathy 

References

  1. 1.
    Viebahn M, Barricks ME, Osterloh MD. Synergism between diabetic and radiation retinopathy: case report and review. Br J Ophthalmol. 1991;75(10):629–32.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Reichstein D. Current treatments and preventive strategies for radiation retinopathy. Curr Opin Ophthalmol. 2015;26(3):157–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Zimmerman CF, Schatz NJ, Glaser JS. Magnetic resonance imaging of radiation optic neuropathy. Am J Ophthalmol. 1990;110(4):389–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Kline LB, Kim JY, Ceballos R. Radiation optic neuropathy. Ophthalmology. 1985;92(8):1118–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Kaushik M, Pulido JS, Schild SE, et al. Risk of radiation retinopathy in patients with orbital and ocular lymphoma. Int J Radiat Oncol Biol Phys. 2012;84(5):1145–50.Google Scholar
  6. 6.
    Alexander KR, Rajagopalan AS, Seiple W, et al. Contrast response properties of magnocellular and parvocellular pathways in retinitis pigmentosa assessed by the visual evoked potential. Invest Ophthalmol Vis Sci. 2005;46(8):2967–73.Google Scholar
  7. 7.
    Leber KA, Bergloff J, Langmann G, et al. Radiation sensitivity of visual and oculomotor pathways. Stereotact Funct Neurosurg. 1995;64(Suppl 1):233–8.Google Scholar
  8. 8.
    Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Gupta V, Al-Dhibi HA, Arevalo JF. Retinal imaging in uveitis. Saudi J Ophthalmol. 2014;28(2):95–103.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.CrossRefPubMedGoogle Scholar
  11. 11.
    Borruat FX, Schatz NJ, Glaser JS, et al. Visual recovery from radiation-induced optic neuropathy. The role of hyperbaric oxygen therapy. J Clin Neuroophthalmol. 1993;13(2):98–101.Google Scholar
  12. 12.
    Roden D, Bosley TM, Fowble B, et al. Delayed radiation injury to the retrobulbar optic nerves and chiasm. Clinical syndrome and treatment with hyperbaric oxygen and corticosteroids. Ophthalmology. 1990;97(3):346–51.Google Scholar
  13. 13.
    Takeda A, Shigematsu N, Suzuki S, et al. Late retinal complications of radiation therapy for nasal and paranasal malignancies: relationship between irradiated-dose area and severity. Int J Radiat Oncol Biol Phys. 1999;44(3):599–605.Google Scholar
  14. 14.
    Gupta A, Dhawahir-Scala F, Smith A, et al. Radiation retinopathy: case report and review. BMC Ophthalmol. 2007;7:6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gass A, Moseley IF. The contribution of magnetic resonance imaging in the differential diagnosis of optic nerve damage. J Neurol Sci. 2000;172(Suppl 1):S17–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Hayreh SS. Evaluation of optic nerve head circulation: review of the methods used. J Glaucoma. 1997;6(5):319–30.CrossRefPubMedGoogle Scholar
  17. 17.
    Avery RB, Diener-West M, Reynolds SM, et al. Histopathologic characteristics of choroidal melanoma in eyes enucleated after iodine 125 brachytherapy in the collaborative ocular melanoma study. Arch Ophthalmol. 2008;126(2):207–12.Google Scholar
  18. 18.
    Krebs IP, Krebs W, Merriam JC, et al. Radiation retinopathy: electron microscopy of retina and optic nerve. Histol Histopathol. 1992;7(1):101–10.Google Scholar
  19. 19.
    Archer DB, Gardiner TA. Ionizing radiation and the retina. Curr Opin Ophthalmol. 1994;5(3):59–65.Google Scholar
  20. 20.
    Krema H, Xu W, Payne D, et al. Factors predictive of radiation retinopathy post (125)iodine brachytherapy for uveal melanoma. Can J Ophthalmol. 2011;46(2):158–63.Google Scholar
  21. 21.
    Nagayama K, Kurita H, Nakamura M, et al. Radiation-induced apoptosis of oligodendrocytes in the adult rat optic chiasm. Neurol Res. 2005;27(4):346–50.Google Scholar
  22. 22.
    Levin LA, Gragoudas ES, Lessell S. Endothelial cell loss in irradiated optic nerves. Ophthalmology. 2000;107(2):370–4.Google Scholar
  23. 23.
    Ryu S, Kolozsvary A, Jenrow KA, et al. Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol. 2007;82(2):119–24.Google Scholar
  24. 24.
    Stitt AW, Anderson HR, Gardiner TA, et al. The combined effects of diabetes and ionising radiation on the rat retina: an ultrastructural study. Curr Eye Res. 1994;13(1):79–86.Google Scholar
  25. 25.
    Krema H, Somani S, Sahgal A, et al. Stereotactic radiotherapy for treatment of juxtapapillary choroidal melanoma: 3-year follow-up. Br J Ophthalmol. 2009;93(9):1172–6.Google Scholar
  26. 26.
    Wang MY, Arnold AC, Vinters HV, et al. Bilateral blindness and lumbosacral myelopathy associated with high-dose carmustine and cisplatin therapy. Am J Ophthalmol. 2000;130(3):367–8.Google Scholar
  27. 27.
    Sanderson PA, Kuwabara T, Cogan DG. Optic neuropathy presumably caused by vincristine therapy. Am J Ophthalmol. 1976;81(2):146–50.Google Scholar
  28. 28.
    Griffin JD, Garnick MB. Eye toxicity of cancer chemotherapy: a review of the literature. Cancer. 1981;48(7):1539–49.Google Scholar
  29. 29.
    Girkin CA, Comey CH, Lunsford LD, et al. Radiation optic neuropathy after stereotactic radiosurgery. Ophthalmology. 1997;104(10):1634–43.Google Scholar
  30. 30.
    Deng X, Yang Z, Liu R, et al. The maximum tolerated dose of gamma radiation to the optic nerve during gamma knife radiosurgery in an animal study. Stereotact Funct Neurosurg. 2013;91(2):79–91.Google Scholar
  31. 31.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.Google Scholar
  32. 32.
    Shukovsky LJ, Fletcher GH. Retinal and optic nerve complications in a high dose irradiation technique of ethmoid sinus and nasal cavity. Radiology. 1972;104(3):629–34.Google Scholar
  33. 33.
    Byers RM. Management of head and neck cancer: a multidisciplinary approach. By Rodney R. Million and Nicholas J. Cassisi, 649 pp, illus, J. B. Lippincott co., Philadelphia, PA, 1984. Head Neck Surg. 1985;7(3):260.Google Scholar
  34. 34.
    Nakissa N, Rubin P, Strohl R, et al. Ocular and orbital complications following radiation therapy of paranasal sinus malignancies and review of literature. Cancer. 1983;51(6):980–6.Google Scholar
  35. 35.
    Parsons JT, Bova FJ, Fitzgerald CR, et al. Radiation retinopathy after external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30(4):765–73.Google Scholar
  36. 36.
    Wara WM, Irvine AR, Neger RE, et al. Radiation retinopathy. Int J Radiat Oncol Biol Phys. 1979;5(1):81–3.Google Scholar
  37. 37.
    Jackson TL, Chakravarthy U, Kaiser PK, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: 52-week safety and efficacy results of the INTREPID study. Ophthalmology. 2013;120(9):1893–900.Google Scholar
  38. 38.
    Jackson TL, Chakravarthy U, Slakter JS, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: year 2 results of the INTREPID study. Ophthalmology. 2015;122(1):138–45.Google Scholar
  39. 39.
    Langmann G, Pendl G, Klaus M, et al. Gamma knife radiosurgery for uveal melanomas: an 8-year experience. J Neurosurg. 2000;93(Suppl 3):184–8.Google Scholar
  40. 40.
    Wackernagel W, Holl E, Tarmann L, et al. Visual acuity after gamma-knife radiosurgery of choroidal melanomas. Br J Ophthalmol. 2013;97(2):153–8.Google Scholar
  41. 41.
    Kang DW, Lee SC, Park YG, et al. Long-term results of gamma knife surgery for uveal melanomas. J Neurosurg. 2012;117(Suppl):108–14.Google Scholar
  42. 42.
    Dinca EB, Yianni J, Rowe J, et al. Survival and complications following gamma knife radiosurgery or enucleation for ocular melanoma: a 20-year experience. Acta Neurochir. 2012;154(4):605–10.Google Scholar
  43. 43.
    Dunavoelgyi R, Zehetmayer M, Gleiss A, et al. Hypofractionated stereotactic photon radiotherapy of posteriorly located choroidal melanoma with five fractions at ten Gy--clinical results after six years of experience. Radiother Oncol. 2013;108(2):342–7.Google Scholar
  44. 44.
    Dunavoelgyi R, Georg D, Zehetmayer M, et al. Dose-response of critical structures in the posterior eye segment to hypofractioned stereotactic photon radiotherapy of choroidal melanoma. Radiother Oncol. 2013;108(2):348–53.Google Scholar
  45. 45.
    Somani S, Sahgal A, Krema H, et al. Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: 2-year follow-up. Can J Ophthalmol. 2009;44(1):61–5.Google Scholar
  46. 46.
    Al-Wassia R, Dal Pra A, Shun K, et al. Stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma: the McGill University experience. Int J Radiat Oncol Biol Phys. 2011;81(4):e455–62.Google Scholar
  47. 47.
    Gunduz K, Shields CL, Shields JA, et al. Radiation retinopathy following plaque radiotherapy for posterior uveal melanoma. Arch Ophthalmol. 1999;117(5):609–14.Google Scholar
  48. 48.
    Finger PT, Chin KJ, Yu GP, et al. Risk factors for radiation maculopathy after ophthalmic plaque radiation for choroidal melanoma. Am J Ophthalmol. 2010;149(4):608–15.Google Scholar
  49. 49.
    Parsons JT, Bova FJ, Fitzgerald CR, et al. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys. 1994;30(4):755–63.Google Scholar
  50. 50.
    Martel MK, Sandler HM, Cornblath WT, et al. Dose-volume complication analysis for visual pathway structures of patients with advanced paranasal sinus tumors. Int J Radiat Oncol Biol Phys. 1997;38(2):273–84.Google Scholar
  51. 51.
    Jiang GL, Tucker SL, Guttenberger R, et al. Radiation-induced injury to the visual pathway. Radiother Oncol. 1994;30(1):17–25.Google Scholar
  52. 52.
    Bhandare N, Monroe AT, Morris CG, et al. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys. 2005;62(4):1070–7.Google Scholar
  53. 53.
    Weber DC, Lomax AJ, Rutz HP, et al. Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother Oncol. 2004;71(3):251–8.Google Scholar
  54. 54.
    Ares C, Hug EB, Lomax AJ, et al. Effectiveness and safety of spot scanning proton radiation therapy for chordomas and chondrosarcomas of the skull base: first long-term report. Int J Radiat Oncol Biol Phys. 2009;75(4):1111–8.Google Scholar
  55. 55.
    Weber DC, Rutz HP, Pedroni ES, et al. Results of spot-scanning proton radiation therapy for chordoma and chondrosarcoma of the skull base: the Paul Scherrer Institut experience. Int J Radiat Oncol Biol Phys. 2005;63(2):401–9.Google Scholar
  56. 56.
    Pommier P, Liebsch NJ, Deschler DG, et al. Proton beam radiation therapy for skull base adenoid cystic carcinoma. Arch Otolaryngol Head Neck Surg. 2006;132(11):1242–9.Google Scholar
  57. 57.
    Noel G, Habrand JL, Mammar H, et al. Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: the Centre de Protontherapie D'Orsay experience. Int J Radiat Oncol Biol Phys. 2001;51(2):392–8.Google Scholar
  58. 58.
    Demizu Y, Murakami M, Miyawaki D, et al. Analysis of vision loss caused by radiation-induced optic neuropathy after particle therapy for head-and-neck and skull-base tumors adjacent to optic nerves. Int J Radiat Oncol Biol Phys. 2009;75(5):1487–92.Google Scholar
  59. 59.
    Hasegawa A, Mizoe JE, Mizota A, et al. Outcomes of visual acuity in carbon ion radiotherapy: analysis of dose-volume histograms and prognostic factors. Int J Radiat Oncol Biol Phys. 2006;64(2):396–401.Google Scholar
  60. 60.
    Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.Google Scholar
  61. 61.
    Stafford SL, Pollock BE, Leavitt JA, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55(5):1177–81.Google Scholar
  62. 62.
    Pollock BE, Link MJ, Leavitt JA, et al. Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery. 2014;75(4):456–60. discussion 60Google Scholar
  63. 63.
    Hiniker SM, Modlin LA, Choi CY, et al. Dose-response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol. 2016;26(2):97–104.Google Scholar
  64. 64.
    Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys. 2010;37(8):4078–101.Google Scholar
  65. 65.
    Mayo C, Martel MK, Marks LB, et al. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S28–35.Google Scholar
  66. 66.
    Kinyoun JL, Zamber RW, Lawrence BS, et al. Photocoagulation treatment for clinically significant radiation macular oedema. Br J Ophthalmol. 1995;79(2):144–9.Google Scholar
  67. 67.
    Hykin PG, Shields CL, Shields JA, et al. The efficacy of focal laser therapy in radiation-induced macular edema. Ophthalmology. 1998;105(8):1425–9.Google Scholar
  68. 68.
    Bakri SJ, Beer PM. Photodynamic therapy for maculopathy due to radiation retinopathy. Eye (Lond). 2005;19(7):795–9.Google Scholar
  69. 69.
    Shields CL, Demirci H, Dai V, et al. Intravitreal triamcinolone acetonide for radiation maculopathy after plaque radiotherapy for choroidal melanoma. Retina. 2005;25(7):868–74.Google Scholar
  70. 70.
    Mason JO 3rd, Albert MA Jr, Persaud TO, et al. Intravitreal bevacizumab treatment for radiation macular edema after plaque radiotherapy for choroidal melanoma. Retina. 2007;27(7):903–7.Google Scholar
  71. 71.
    Finger PT. Radiation retinopathy is treatable with anti-vascular endothelial growth factor bevacizumab (Avastin). Int J Radiat Oncol Biol Phys. 2008;70(4):974–7.Google Scholar
  72. 72.
    Glantz MJ, Burger PC, Friedman AH, et al. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020–7.Google Scholar
  73. 73.
    Landau K, Killer HE. Radiation damage. Neurology. 1996;46(3):889.Google Scholar
  74. 74.
    Levy RL, Miller NR. Hyperbaric oxygen therapy for radiation-induced optic neuropathy. Ann Acad Med Singap. 2006;35(3):151–7.Google Scholar
  75. 75.
    Finger PT, Chin KJ. Antivascular endothelial growth factor bevacizumab for radiation optic neuropathy: secondary to plaque radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):789–98.Google Scholar
  76. 76.
    Finger PT. Anti-VEGF bevacizumab (Avastin) for radiation optic neuropathy. Am J Ophthalmol. 2007;143(2):335–8.Google Scholar
  77. 77.
    Chahal HS, Lam A, Khaderi SK. Is pentoxifylline plus vitamin E an effective treatment for radiation-induced optic neuropathy? J Neuroophthalmol. 2013;33(1):91–3.Google Scholar
  78. 78.
    Farooq O, Lincoff NS, Saikali N, et al. Novel treatment for radiation optic neuropathy with intravenous bevacizumab. J Neuroophthalmol. 2012;32(4):321–4.Google Scholar
  79. 79.
    Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215–22.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation OncologyMayo ClinicRochesterUSA

Personalised recommendations