Advertisement

Spinal Cord Tolerance and Risk of Radiation Myelopathy

  • Majed Alghamdi
  • Shun Wong
  • Paul Medin
  • Lijun Ma
  • Young Lee
  • Sten Myrehaug
  • Chia-Lin Tseng
  • Hany Soliman
  • David A. Larson
  • Arjun Sahgal
Chapter

Abstract

Radiation myelopathy (RM) is one of the most feared complications of radiation therapy.

It is a diagnosis of exclusion based on both clinical and radiographic findings. Safe spinal cord dose limits have been derived from preclinical and limited human clinical dosimetric data. The doses to the spinal cord associated with a clinically acceptable risk of RM (≤5%) vary depending on dose per fraction, technique, previous radiation treatment, and time interval between radiation courses. When appropriate spinal cord dose limits are applied, RM is considered rare event. This chapter will summarize the data, specific to both conventionally fractionated radiation (1.8–2.0 Gy/fraction) and high-dose stereotactic body radiotherapy (>5 Gy/fraction), as to spinal cord tolerance and recommendations for safe practice.

Keywords

Spinal cord Stereotactic body radiotherapy Radiation myelopathy Spinal cord tolerance Late effects 

Notes

Conflicts of Interest

Arjun Sahgal: Grants from Elekta AB and educational honoraria from previous educational seminars from Elekta AB, Varian Medical Systems, Accuray and Medtronic kyphoplasty division.

References

  1. 1.
    Wong CS, Van Dyk J, Milosevic M, et al. Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys. 1994;30(3):575–81.Google Scholar
  2. 2.
    Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Sahgal A, Roberge D, Schellenberg D, et al. The Canadian association of radiation oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Oncol (R Coll Radiol). 2012;24(9):629–39.CrossRefGoogle Scholar
  4. 4.
    Sahgal A, Ma L, Gibbs I, et al. Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(2):548–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Sahgal A, Ma L, Weinberg V, et al. Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(1):107–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Sahgal A, Weinberg V, Ma L, et al. Probabilities of radiation myelopathy specific to stereotactic body radiation therapy to guide safe practice. Int J Radiat Oncol Biol Phys. 2013;85(2):341–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Wong CS, Fehlings MG, Sahgal A. Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord. 2015;53(8):574–80.CrossRefPubMedGoogle Scholar
  8. 8.
    Schultheiss TE, Higgins EM, El-Mahdi AM. The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys. 1984;10(7):1109–15.CrossRefPubMedGoogle Scholar
  9. 9.
    Schultheiss TE, Stephens LC, Peters LJ. Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys. 1986;12(10):1765–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang PY, Shen WC, Jan JS. Serial MRI changes in radiation myelopathy. Neuroradiology. 1995;37(5):374–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Philippens ME, Gambarota G, van der Kogel AJ, et al. Radiation effects in the rat spinal cord: evaluation with apparent diffusion coefficient versus T2 at serial MR imaging. Radiology. 2009;250(2):387–97.Google Scholar
  12. 12.
    Uchida K, Nakajima H, Takamura T, et al. Neurological improvement associated with resolution of irradiation-induced myelopathy: serial magnetic resonance imaging and positron emission tomography findings. J Neuroimaging. 2009;19(3):274–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Esik O, Csere T, Stefanits K, et al. A review on radiogenic Lhermitte’s sign. Pathol Oncol Res. 2003;9(2):115–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988;14(4):751–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Nieder C, Grosu AL, Andratschke NH, et al. Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys. 2005;61(3):851–5.Google Scholar
  16. 16.
    Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys. 1989;16(6):1623–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Daly ME, Luxton G, Choi CY, et al. Normal tissue complication probability estimation by the Lyman-Kutcher-Burman method does not accurately predict spinal cord tolerance to stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):2025–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang JZ, Huang Z, Lo SS, et al. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2(39):39ra48.Google Scholar
  20. 20.
    Huang Z, Mayr NA, Yuh WT, et al. Reirradiation with stereotactic body radiotherapy: analysis of human spinal cord tolerance using the generalized linear-quadratic model. Future Oncol. 2013;9(6):879–87.Google Scholar
  21. 21.
    Sahgal A, Ma L, Fowler J, et al. Impact of dose hot spots on spinal cord tolerance following stereotactic body radiotherapy: a generalized biological effective dose analysis. Technol Cancer Res Treat. 2012;11(1):35–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Ma L, Kirby N, Korol R, et al. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments. Phys Med Biol. 2012;57(23):7843–51.Google Scholar
  23. 23.
    Lo YC, McBride WH, Withers HR. The effect of single doses of radiation on mouse spinal cord. Int J Radiat Oncol Biol Phys. 1992;22(1):57–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Wong CS, Poon JK, Hill RP. Re-irradiation tolerance in the rat spinal cord: influence of level of initial damage. Radiother Oncol. 1993;26(2):132–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Hopewell JW, Morris AD, Dixon-Brown A. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays. Br J Radiol. 1987;60(719):1099–108.CrossRefPubMedGoogle Scholar
  26. 26.
    Knowles JF. The effects of single dose X-irradiation on the Guinea-pig spinal cord. Int J Radiat Biol Relat Stud Phys Chem Med. 1981;40(3):265–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Knowles JF. The radiosensitivity of the Guinea-pig spinal cord to X-rays: the effect of retreatment at one year and the effect of age at the time of irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1983;44(5):433–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Bijl HP, van Luijk P, Coppes RP, et al. Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys. 2002;52(1):205–11.Google Scholar
  29. 29.
    Scalliet P, Landuyt W, van der Schueren E. Repair kinetics as a determining factor for late tolerance of central nervous system to low dose rate irradiation. Radiother Oncol. 1989;14(4):345–53.CrossRefPubMedGoogle Scholar
  30. 30.
    Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to single-session uniform irradiation in pigs: implications for a dose-volume effect. Radiother Oncol. 2013;106(1):101–5.Google Scholar
  31. 31.
    Franklin RJ, Gilson JM, Blakemore WF. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res. 1997;50(2):337–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Withers R. Migration and myelination. Int J Radiat Oncol Biol Phys. 2003;57(1):9–10.CrossRefPubMedGoogle Scholar
  33. 33.
    van Luijk P, Bijl HP, Coppes RP, et al. Techniques for precision irradiation of the lateral half of the rat cervical spinal cord using 150 MeV protons [corrected]. Phys Med Biol. 2001;46(11):2857–71.CrossRefPubMedGoogle Scholar
  34. 34.
    Bijl HP, van Luijk P, Coppes RP, et al. Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys. 2005;61(2):543–51.Google Scholar
  35. 35.
    Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model. Int J Radiat Oncol Biol Phys. 2011;79(1):226–32.Google Scholar
  36. 36.
    van den Aardweg GJ, Hopewell JW, Whitehouse EM. The radiation response of the cervical spinal cord of the pig: effects of changing the irradiated volume. Int J Radiat Oncol Biol Phys. 1995;31(1):51–5.CrossRefPubMedGoogle Scholar
  37. 37.
    Daly ME, Choi CY, Gibbs IC, et al. Tolerance of the spinal cord to stereotactic radiosurgery: insights from hemangioblastomas. Int J Radiat Oncol Biol Phys. 2011;80(1):213–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Bijl HP, van Luijk P, Coppes RP, et al. Influence of adjacent low-dose fields on tolerance to high doses of protons in rat cervical spinal cord. Int J Radiat Oncol Biol Phys. 2006;64(4):1204–10.Google Scholar
  39. 39.
    Schultheiss TE. The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys. 2008;71(5):1455–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Ang KK, Price RE, Stephens LC, et al. The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys. 1993;25(3):459–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Ang KK, Jiang GL, Feng Y, et al. Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys. 2001;50(4):1013–20.Google Scholar
  42. 42.
    Wong CS, Hao Y. Long-term recovery kinetics of radiation damage in rat spinal cord. Int J Radiat Oncol Biol Phys. 1997;37(1):171–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Mason KA, Withers HR, Chiang CS. Late effects of radiation on the lumbar spinal cord of Guinea pigs: re-treatment tolerance. Int J Radiat Oncol Biol Phys. 1993;26(4):643–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Medin PM, Foster RD, van der Kogel AJ, et al. Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model. Int J Radiat Oncol Biol Phys. 2012;83(3):1031–7.Google Scholar
  45. 45.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42–9.CrossRefPubMedGoogle Scholar
  46. 46.
    DeLaney TF, Liebsch NJ, Pedlow FX, et al. Long-term results of phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. J Surg Oncol. 2014;110(2):115–22.CrossRefPubMedGoogle Scholar
  47. 47.
    DeLaney TF, Liebsch NJ, Pedlow FX, et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009;74(3):732–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Hashmi A, Guckenberger M, Kersh R, et al. Re-irradiation stereotactic body radiotherapy for spinal metastases: a multi-institutional outcome analysis. J Neurosurg Spine. 2016;25:1–8.CrossRefGoogle Scholar
  49. 49.
    Thibault I, Campbell M, Tseng CL, et al. Salvage stereotactic body radiotherapy (SBRT) following in-field failure of initial SBRT for spinal metastases. Int J Radiat Oncol Biol Phys. 2015;93(2):353–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 2005;62(1):279–87.CrossRefPubMedGoogle Scholar
  51. 51.
    Nordal RA, Wong CS. Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol. 2004;63(5):474–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A. 2000;97(19):10526–31.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tonia T, Mettler A, Robert N, et al. Erythropoietin or darbepoetin for patients with cancer. Cochrane Database Syst Rev. 2012;12:CD003407.PubMedGoogle Scholar
  54. 54.
    Helms A, Evans AW, Chu J, et al. Hyperbaric oxygen for neurologic indications—action plan for multicenter trials in: stroke, traumatic brain injury, radiation encephalopathy & status migrainosus. Undersea Hyperb Med. 2011;38(5):309–19.PubMedGoogle Scholar
  55. 55.
    Calabro F, Jinkins JR. MRI of radiation myelitis: a report of a case treated with hyperbaric oxygen. Eur Radiol. 2000;10(7):1079–84.CrossRefPubMedGoogle Scholar
  56. 56.
    Thibault I, Chang EL, Sheehan J, et al. Response assessment after stereotactic body radiotherapy for spinal metastasis: a report from the SPIne response assessment in neuro-oncology (SPINO) group. Lancet Oncol. 2015;16(16):e595–603.CrossRefPubMedGoogle Scholar
  57. 57.
    Hyde D, Lochray F, Korol R, et al. Spine stereotactic body radiotherapy utilizing cone-beam CT image-guidance with a robotic couch: Intrafraction motion analysis accounting for all six degrees of freedom. Int J Radiat Oncol Biol Phys. 2012;82(3):e555–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Majed Alghamdi
    • 1
    • 2
  • Shun Wong
    • 3
  • Paul Medin
    • 4
  • Lijun Ma
    • 5
  • Young Lee
    • 3
  • Sten Myrehaug
    • 3
  • Chia-Lin Tseng
    • 3
  • Hany Soliman
    • 3
  • David A. Larson
    • 5
  • Arjun Sahgal
    • 3
  1. 1.Department of Radiation Oncology, Sunnybrook Odette Cancer CentreUniversity of TorontoTorontoCanada
  2. 2.Faculty of MedicineAl Baha UniversityAl BahaSaudi Arabia
  3. 3.Department of Radiation Oncology, Sunnybrook Odette Cancer CentreUniversity of TorontoTorontoCanada
  4. 4.Department of Radiation OncologyUniversity of Texas SouthwesternDallasUSA
  5. 5.Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations