Underlying Drivers and Spatial Determinants of post-Soviet Agricultural Land Abandonment in Temperate Eastern Europe

  • Alexander V. PrishchepovEmail author
  • Daniel Müller
  • Matthias Baumann
  • Tobias Kuemmerle
  • Camilo Alcantara
  • Volker C. Radeloff


Our goal was to understand the underlying drivers and spatial determinants of agricultural land abandonment following the collapse of the Soviet Union and the subsequent transition from state-command to market-driven economies from 1990 to 2000. We brought an example of agricultural land-use change in one agro-climatic zone stretching across Lithuania, Belarus, and Russia. Here, we provide an overview of the agricultural changes for the studied countries. We estimated the rates and patterns of agricultural land abandonment based on Landsat TM/ETM+ satellite images and linked these data with institutional changes regarding land use. Using spatially explicit logistic regressions, we assessed spatial determinants of agricultural land abandonment. The highest rates of land abandonment from 1990 to 2000 were observed in Russia (31 %), followed by Lithuania (19 %), and Belarus (13 %), and the differences in land abandonment rates reflected the contrasting strategies for transitioning toward a market economy. The spatial patterns of agricultural land abandonment across Lithuania and Russia corresponded to the land rent theory of von Thünen, as sites with low crop yields that were distant from markets had higher rates of abandonment. However, this was not the case for Belarus, where the institutional environment regarding agricultural land use differed from neighboring Lithuania and Russia.


Agricultural Land Collective Farm Soviet Bloc Agricultural Abandonment Abandonment Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge support for this research by the NASA Land Cover and Land Use Change program (NASA NNX13AC66G), the German Science Foundation (DFG, project LUCC-BIO-1), the European Commission (projects VOLANTE and HERCULES), the GERUKA project funded by the German Ministry of Food and Agriculture (BMLE) and EPIKUR (Leibniz Foundation).


  1. Alcantara C, Kuemmerle T, Baumann M, Bragina EV, Griffiths P, Hostert P, Knorn J et al (2013) Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ Res Lett 8(3) (September 1):035035Google Scholar
  2. Alix-Garcia J, Kuemmerle T, Radeloff VC (2012) Prices, land tenure institutions, and geography: a matching analysis of farmland abandonment in post-socialist Eastern Europe. Land Econ 88(3):425–443Google Scholar
  3. Batijes NH (2001) Soil data for land suitability assessment and environmental protection in Central Eastern Europe—the 1:250 0000 scale SOVEUR project. Land 5(1):51–68Google Scholar
  4. Baumann M, Kuemmerle T, Elbakidze M, Ozdogan M, Radeloff VC, Keuler NS, Prishchepov AV, Kruhlov I, Hostert P (2011) Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 28(3):552–562CrossRefGoogle Scholar
  5. Baumann M, Radeloff VC, Avedian V, Kuemmerle T (2014) Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg Environ ChangeGoogle Scholar
  6. Belstat (2002) Regions of Belarus republic. Statistical compendium (Regioni Respubliki Belarus. Statisticheskii Sbornik), vol V1. BELSTAT, MinskGoogle Scholar
  7. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  8. deBeurs KM, Ioffe G (2013) Use of landsat and MODIS data to remotely estimate Russia’s Sown Area. J Land Use Sci 1–25, 22 May 2013Google Scholar
  9. de Beurs K, Ioffe G, Nefedova T, Henebry G (2017) Land Change in European Russia: 1982–2011. In: Gutman G, Radeloff V (eds) Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991. doi: 10.1007/978-3-319-42638-9_10
  10. DeLeo J (1993) Receiver operating characteristic laboratory ROCLAB: software for developing decision strategies that account for uncertainty. In: Proceedings of the second international symposium on uncertainty, modeling and analysis. IEEE Computer Society Press, College Park, pp 318–325Google Scholar
  11. Diamond J (2001) Ecology—Dammed experiments! Science 294(5548) (November 30):1847–1848Google Scholar
  12. Folch R (2000) Encyclopedia of the biosphere: deciduous forests, vol 7. Gale Group, DetroitGoogle Scholar
  13. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS et al (2005) Global consequences of land use. Science 309(5734) (July 22):570–574Google Scholar
  14. Fox J, Rindfuss RR, Walsh SJ, Mishra V (2003) People and the environment: approaches for linking household and community surveys to remote sensing and GIS. Springer, BerlinGoogle Scholar
  15. Gellrich M, Baur P, Koch B, Zimmermann NE (2007) Agricultural land abandonment and natural forest re-growth in the Swiss Mountains: a spatially explicit economic analysis. Agric Ecosyst Environ 118(1–4):93–108CrossRefGoogle Scholar
  16. Goskomstat (1991) National economy of USSR in 1990 (Narodnoe Hozyaistvo v 1990). Finansy i Statistika, MoscowGoogle Scholar
  17. Goskomstat LitSSR (1989) Statistical yearbook of Lithuanian SSR in 1988 (Statisticheskii Ezhegodnik Litovskoi SSR v 1988). Information-Publishing Center, VilniusGoogle Scholar
  18. Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8(4):045024CrossRefGoogle Scholar
  19. Hostert P, Kuemmerle T, Sieber A, Prishchepov AV, Lambin EF, Radeloff VC (2011) Rapid land use changes after socioeconomic disturbances: chernobyl and the collapse of the Soviet Union. Environ Res LettGoogle Scholar
  20. Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 221–233Google Scholar
  21. IIASA (2000) Global agro-ecological zones (Global-AEZ) CD-ROM FAO/IIASA. Available: Accessed 2014. IIASA
  22. Ioffe G, Nefedova T, Zaslavsky I (2004) From spatial continuity to fragmentation: the case of Russian farming. Ann Assoc Am Geogr 94(4) (December):913–943Google Scholar
  23. Irwin EG, Bockstael NE (2002) Interacting agents, spatial externalities and the evolution of residential land use patterns. J Econ Geogr 2(1) (January 1):31–54Google Scholar
  24. Kaimowitz D, Mertens B, Wunder S, Pacheco P (2004) Hamburger connection fuels Amazon destruction: cattle ranching and deforestation in Brazil’s Amazon, 23 Jan 2009Google Scholar
  25. Kontorovich V (2001) The Russian health crisis and the economy. Communist Post-Communist Stud 34(2):221–240CrossRefGoogle Scholar
  26. Kuemmerle T, Radeloff VC, Perzanowski K, Hostert P (2006) Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens Environ 103(4) (August 30):449–464Google Scholar
  27. Kuemmerle T, Hostert P, Radeloff V, van der Linden S, Perzanowski K, Kruhlov I (2008) Cross-border comparison of post-socialist farmland abandonment in the Carpathians. Ecosystems 11:614–628CrossRefGoogle Scholar
  28. Kurganova I, Lopes de Gerenyu V, Six J, Kuzyakov Y (2013) Carbon cost of collective farming collapse in Russia. Global Change Biol (20):938–947Google Scholar
  29. Kraemer R, Prishchepov AV, Müller D, Kuemmerle T, Radeloff VC, Dara Andrey, Terekhov A, Frühauf M (2015) Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ Res Lett 10(5):054012CrossRefGoogle Scholar
  30. Lambin EF, Turner BL II, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269CrossRefGoogle Scholar
  31. Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27(2):108–118CrossRefGoogle Scholar
  32. Lerman Z, Shagaida N (2007) Land policies and agricultural land markets in Russia. Land Use Policy 24(1):14–23CrossRefGoogle Scholar
  33. Lerman Z, Csaki C, Feder G (2004) Agriculture in transition: land policies and evolving farm structures in post-Soviet Countries. Lexington Books, LanhamGoogle Scholar
  34. Lithstat (2014) Lithuanian statistics online database. Available: Accessed 2014
  35. Lyuri DI, Goryachkin SV, Karavaeva NA, Denisenko EA, Nefedova TG (2010) Dynamics of agricultural lands of Russia in the XXth century and postagrogenic restoration of vegetation and soils (Dinamika selskohozjaistvennih zemel Rossii v XX veke I postagrogennoje vosstanovlenije rastitelnosti i pochv). GEOS, MoscowGoogle Scholar
  36. Mac Nally R (1996) Hierarchical partitioning as an interpretative tool in multivariate inference. Aust J Ecol 21:224–228CrossRefGoogle Scholar
  37. Meyfroidt P, Schierhorn F, Prishchepov AV, Müller D, Kuemmerle T (2016) Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob Environ Change 37:1–15CrossRefGoogle Scholar
  38. Millington J, Perry G, Romero-Calcerrada R (2007) Regression techniques for examining land use/cover change: a case study of a Mediterranean Landscape. Ecosystems 10(4):562–578CrossRefGoogle Scholar
  39. Müller D, Munroe DK (2008) Changing rural landscapes in Albania: cropland abandonment and forest clearing in the postsocialist transition. Ann Assoc Am Geogr 98(4):855–876CrossRefGoogle Scholar
  40. Müller D, Kuemmerle T, Rusu M, Griffiths P (2009) Lost in transition: determinants of post-socialist cropland abandonment in Romania. J Land Use Sci 4:109–129CrossRefGoogle Scholar
  41. Müller D, Sikor T (2006) Effects of postsocialist reforms on land cover and land use in South-Eastern Albania. Appl Geogr 26(3–4):175–191Google Scholar
  42. Nefedova T (2011) Agricultural land in Russia and its dynamics. Reg Res Russia 1(3):292–295CrossRefGoogle Scholar
  43. Nikodemus O, Bell S, Grine I, Liepins I (2005) The impact of economic, social and political factors on the landscape structure of the Vidzeme uplands in Latvia. Landscape Urban Plann 70(1–2) (January 15):57–67Google Scholar
  44. Novozhenina O, Baharev I, Mollicone D (2009) ‘Hard-Okorok’(‘Hard-Hock’). (January 23): 23 Jan 2009Google Scholar
  45. Peterson U, Aunap R (1998) Changes in agricultural land use in Estonia in the 1990s detected with multitemporal landsat MSS imagery. Landscape Urban Plann 41(3–4) (July 6):193–201Google Scholar
  46. Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich Watershed, Massachusetts, USA. Agric Ecosyst Environ 85(1–3):239–248CrossRefGoogle Scholar
  47. Prishchepov AV, Radeloff VC, Dubinin M, Alcantara C (2012a) The effect of landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens Environ 126(November):195–209CrossRefGoogle Scholar
  48. Prishchepov AV, Radeloff VC, Baumann M, Kuemmerle T, Müller D (2012b) Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ Res Lett 7(2) (June 1):024021Google Scholar
  49. Prishchepov AV, Butsic V, Radeloff VC (2012c) Sensitivity of spatially explicit land-use logistic regression models to the errors land-use change maps. In: International environmental modelling and software society (iEMSs) 2012 international congress on environmental modelling and software managing resources of a limited planet, sixth Biennial meeting, vol 8, Leipzig, GermanyGoogle Scholar
  50. Prishchepov AV, Müller D, Dubinin M, Baumann M, Radeloff VC (2013) Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 30(1) (January):873–884Google Scholar
  51. R Development Core Team (2011) R: a language and environment for statistical computing, Vienna, Austria. Available: Accessed 2014
  52. Rosstat (2002) Regions of Russia. Socio-economic indicators (Regiony Rossii. Sotsialʼno-ekonomicheskie pokazateli). Russian federal service of state statistics, Moscow, Russia. Available: Accessed 2014
  53. Rozelle S, Swinnen JFM (2004) Success and failure of reform: insights from the transition of agriculture. J Econ Lit 42(2):404–456CrossRefGoogle Scholar
  54. Sakovich VS (2008) Agriculture in Belarus between 1980–2007: tendency of the development (Selskoe Hozjaistvo v Respublike Belarus v 1980–2007g.: tendencii razvitija). Belorusskaja nauka, MinskGoogle Scholar
  55. Sieber A, Kuemmerle T, Prishchepov AV, Wendland KJ, Baumann M, Radeloff VC, Baskin LM, Hostert P (2013) Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens Environ 133:38–51CrossRefGoogle Scholar
  56. Schierhorn F, Müller D, Beringer T, Prishchepov AV, Kuemmerle T, Balmann A (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine and Belarus. Global Biogeochem Cycles (November) (27):1–11Google Scholar
  57. Schierhorn F, Müller D, Prishchepov AV, Faramarzi M, Balmann A (2014) The potential of Russia to increase its wheat production through cropland expansion and intensification. Glob Food Secur 3(3–4):133–141CrossRefGoogle Scholar
  58. Smailichuk A, Müller D, Prishchepov AV, Levers C, Kruhlov I, Kuemmerle T (2016) Recultivation of abandoned agricultural lands in Ukraine: patterns and drivers. Glob Environ ChangeGoogle Scholar
  59. Stuikys V, Ladyga A (1995) Agriculture of Lithuania. Valystybinis Leidybos Centras, VilniusGoogle Scholar
  60. Václavík T, Rogan J (2009) Identifying trends in land use/land cover changes in the context of post-socialist transformation in Central Europe: a case study of the greater Olomouc Region, Czech Republic. GISci Remote Sens 46(1):54–76CrossRefGoogle Scholar
  61. White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50(1):1–25CrossRefGoogle Scholar
  62. World Bank (2013) World development indicators. Available:

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Alexander V. Prishchepov
    • 1
    • 2
    Email author
  • Daniel Müller
    • 2
    • 3
  • Matthias Baumann
    • 3
  • Tobias Kuemmerle
    • 3
  • Camilo Alcantara
    • 4
  • Volker C. Radeloff
    • 5
  1. 1.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenKøbenhavn KDenmark
  2. 2.Leibniz Institute of Agricultural Development in Transition Economies (IAMO)Halle (Saale)Germany
  3. 3.Geography DepartmentHumboldt-University BerlinBerlinGermany
  4. 4.Departamento de Ecología y Recursos NaturalesCentro Universitario de la Costa Sur, Universidad de GuadalajaraAutlan de Navarro, JaliscoMexico
  5. 5.Department of Forest and Wildlife EcologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations