Advertisement

Polynomial-Time Algorithm for Isomorphism of Graphs with Clique-Width at Most Three

  • Bireswar Das
  • Murali Krishna Enduri
  • I. Vinod ReddyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

The clique-width is a measure of complexity of decomposing graphs into certain tree-like structures. The class of graphs with bounded clique-width contains bounded tree-width graphs. We give a polynomial time graph isomorphism algorithm for graphs with clique-width at most three. Our work is independent of the work by Grohe and Schweitzer [17] showing that the isomorphism problem for graphs of bounded clique-width is polynomial time.

References

  1. 1.
    Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F. (ed.) Fundamentals of Computation Theory. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  2. 2.
    Babai, L.: Graph isomorphism in quasipolynomial time (2015). arXiv preprint arXiv:1512.03547
  3. 3.
    Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial \(k\)-trees. J. Algorithms 11(4), 631–643 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonamy, M.: A small report on graph and tree isomorphism (2010). http://bit.ly/1ySeNBn
  5. 5.
    Boppana, R.B., Hastad, J., Zachos, S.: Does co-NP have short interactive proofs? Inf. Process. Lett. 25(2), 127–132 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Corneil, D.G., Habib, M., Lanlignel, J.M., Reed, B., Rotics, U.: Polynomial-time recognition of clique-width 3 graphs. Discrete Appl. Math. 160(6), 834–865 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1), 77–114 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. CAAP’94. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Cunningham, W.H.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Das, B., Enduri, M.K., Reddy, I.V.: Logspace and FPT algorithms for graph isomorphism for subclasses of bounded tree-width graphs. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 329–334. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Das, B., Enduri, M.K., Reddy, I.V.: Polynomial-time algorithm for isomorphism of graphs with clique-width at most 3. arXiv preprint (2015). arXiv:1506.01695
  15. 15.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Hungarica 18(1), 25–66 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grohe, M., Schweitzer, P.: Isomorphism testing for graphs of bounded rank width. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1010–1029. IEEE (2015)Google Scholar
  18. 18.
    James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In: Proceedings of 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 281–290 (1972)Google Scholar
  19. 19.
    Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of bounded clique-width. Discrete Appl. Math. 157(12), 2747–2761 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In: IEEE 55th Annual Symposium on (FOCS), pp. 186–195 (2014)Google Scholar
  21. 21.
    Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci. 25(1), 42–65 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ma, T.H., Spinrad, J.: An O(\(n^2\)) algorithm for undirected split decomposition. J. Algorithms 16(1), 145–160 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proceedings of 12th Annual ACM Symposium on Theory of Computing, pp. 225–235. ACM (1980)Google Scholar
  24. 24.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theor. Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Oum, S., Seymour, P.: Testing branch-width. J. Comb. Theor. Ser. B 97(3), 385–393 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Zemlyachenko, V., Konieko, N., Tyshkevich, R.: Graph isomorphism problem (Russian). In: The Theory of Computation I. Notes Sci. Sem. LOMI, vol. 118 (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bireswar Das
    • 1
  • Murali Krishna Enduri
    • 1
  • I. Vinod Reddy
    • 1
    Email author
  1. 1.IIT GandhinagarGujaratIndia

Personalised recommendations