Hadwiger’s Conjecture and Squares of Chordal Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9797)

Abstract

Hadwiger’s conjecture states that for every graph G, \(\chi (G)\le \eta (G)\), where \(\chi (G)\) is the chromatic number and \(\eta (G)\) is the size of the largest clique minor in G. In this work, we show that to prove Hadwiger’s conjecture in general, it is sufficient to prove Hadwiger’s conjecture for the class of graphs \(\mathcal {F}\) defined as follows: \(\mathcal {F}\) is the set of all graphs that can be expressed as the square graph of a split graph. Since split graphs are a subclass of chordal graphs, it is interesting to study Hadwiger’s Conjecture in the square graphs of subclasses of chordal graphs. Here, we study a simple subclass of chordal graphs, namely 2-trees and prove Hadwiger’s Conjecture for the squares of the same. In fact, we show the following stronger result: If G is the square of a 2-tree, then G has a clique minor of size \(\chi (G)\), where each branch set is a path.

Keywords

Hadwiger’s conjecture 2-trees Square graphs Minors 

References

  1. [AH+77]
    Appel, K., Haken, W., et al.: Every planar map is four colorable. part i: discharging. Ill. J. Math. 21(3), 429–490 (1977)MathSciNetMATHGoogle Scholar
  2. [AHK+77]
    Appel, K., Haken, W., Koch, J., et al.: Every planar map is four colorable. part ii: reducibility. Ill. J. Math. 21(3), 491–567 (1977)MathSciNetMATHGoogle Scholar
  3. [BC09]
    Belkale, N., Sunil Chandran, L.: Hadwiger’s conjecture for proper circular arc graphs. Eur. J. Comb. 30(4), 946–956 (2009)CrossRefMATHGoogle Scholar
  4. [BCE80]
    Bollobs, B., Catlin, P.A., Erdős, P.: Hadwiger’s conjecture is true for almost every graph. Eur. J. Comb. 1(3), 195–199 (1980)CrossRefMATHGoogle Scholar
  5. [Bla05]
    Blasiak, J.: A special case of Hadwiger’s conjecture. arXiv preprint arXiv:math/0501073 (2005)
  6. [CF08]
    Chudnovsky, M., Fradkin, A.O.: Hadwiger’s conjecture for quasi-line graphs. J. Graph Theory 59(1), 17–33 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. [CKR08]
    Sunil Chandran, L., Kostochka, A., Krishnam Raju, J.: Hadwiger number and the cartesian product of graphs. Graphs Comb. 24(4), 291–301 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. [Had43]
    Hadwiger, H.: Über eine klassifikation der streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich 88, 133–142 (1943)MathSciNetMATHGoogle Scholar
  9. [KT05]
    Kawarabayashi, K., Toft, B.: Any 7-chromatic graphs has k 7 or k 4, 4 as a minor. Combinatorica 25(3), 327–353 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. [KT14]
    Kammer, F., Tholey, T.: Approximation algorithms for intersection graphs. Algorithmica 68(2), 312–336 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. [LL07]
    Li, D., Liu, M.: Hadwigers conjecture for powers of cycles and their complements. Eur. J. Combinatorics 28(4), 1152–1155 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. [RS04]
    Reed, B., Seymour, P.: Hadwiger’s conjecture for line graphs. Eur. J. Comb. 25(6), 873–876 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. [RST93]
    Robertson, N., Seymour, P., Thomas, R.: Hadwiger’s conjecture fork 6-free graphs. Combinatorica 13(3), 279–361 (1993)MathSciNetCrossRefMATHGoogle Scholar
  14. [Wag37]
    Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)MathSciNetCrossRefMATHGoogle Scholar
  15. [Weg77]
    Wegner, G.: Graphs with given diameter and a coloring problem (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Max Planck Institute for InformaticsSaarbrückenGermany
  3. 3.School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia

Personalised recommendations