Advertisement

CPS-Based Manufacturing with Semantic Object Memories and Service Orchestration for Industrie 4.0 Applications

  • Jens HaupertEmail author
  • Xenia Klinge
  • Anselm Blocher
Chapter
Part of the Springer Series in Wireless Technology book series (SSWT)

Abstract

In this chapter we present current work about the Internet of Things (IoT) as a general building block for industrial production. The basic idea is to provide each physical entity with a virtual representation and a storage space, named the digital object memory. Such memories can be used for produced goods as well as the production line components themselves and contain all production-relevant data. Moreover, in smart production lines a centralized orchestration service coordinates “the needs” of each good and triggers the necessary actuators. For each object an individual production plan is created, based on the object’s memory and external requirements and conditions. Based on this concept, actuators can be replaced without stopping the production line and all collected data is available in the object’s and in the production line’s memory and can be further displayed or processed.

Keywords

Internet of things (IoT) Digital object memory (DOMe) Semantic service orchestration Cyber-physical systems Smart factory Industrie 4.0 

References

  1. 1.
    Heuser L, Wahlster W (eds) (2011) Internet der Dienste. Springer, BerlinGoogle Scholar
  2. 2.
    Tseng MM, Jiao J (2007) Mass customization. In: Salvendy G (ed) Handbook of industrial engineering: technology and operations management, 3rd edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Wahlster W (2014) Semantic technologies for mass customization. In: Wahlster W, Grallert HJ, Wess S, Friedrich H, Widenka T (eds) Towards the internet of services: the THESEUS research program. Springer, BerlinGoogle Scholar
  4. 4.
    Müller S, Lohse W, Brecher C (2015): Integration von Produkt- und Prozessinformationen zur multidimensionalen Optimierung im Leitsystem. In: Brecher C, Kürger J, Uhlmann E, Klemm P, Lechler A, Schlechtendahl J (Hrsg.): Industrie 4.0, innovative Konzepte zur Automatisierung. (Reihe: Fortschritt-Berichte VDI: Reihe 2, Fertigungstechnik, Bd. 693). VDI-Verlag, Düsseldorf, pp 31–44Google Scholar
  5. 5.
    Kröner A, Haupert J, Hauck C, Deru M, Bergweiler S (2013) Fostering access to data collections in the internet of things. In: Proceedings of UBICOMM 2013, the seventh international conference on mobile ubiquitous computing, systems, services and technologies, Porto, IARIA, pp 65–68 304Google Scholar
  6. 6.
    Haupert J (2014) DOMeMan: a holistic framework for digital object memories. J Ambient Intell Smart Environ (JAISE) 6:507–522. IOS PressGoogle Scholar
  7. 7.
    Loskyll M, Dahman I, Schlick J, Schwarz M (2012) Context-based orchestration for control of resource-efficient manufacturing processes, Future Internet No. 3, MDPI, pp 737–761Google Scholar
  8. 8.
    Loskyll M, Schlick J, Hodeck S, Ollinger L, Gerber T, Pirvu B (2011) Semantic service discovery and orchestration for manufacturing processes. In: IEEE 16th conference on emerging technologies & factory automation (ETFA). IEEE, pp 1–8Google Scholar
  9. 9.
    Manola F, Miller E (eds) (2004) RDF primer. In: World wide web consortium (W3C). http://www.w3.org/TR/2004/REC-rdf-primer-20040210. Accessed 10 Nov 2015
  10. 10.
    Smith M, Welty C, McGuinness D (eds) (2004) OWL web ontology language guide. In: World wide web consortium (W3C). http://www.w3.org/TR/2004/REC-owl-guide-20040210. Accessed 10 Nov 2015
  11. 11.
    Lastra M, Delamer I (2006) Semantic web services in factory automation: fundamental insights and research roadmap. IEEE Trans Industr Inf 2:1–11. doi: 10.1109/TII.2005.862144 CrossRefGoogle Scholar
  12. 12.
    Draht R, Lüder A, Peschke J, Hundt L (2008) AutomationML—the glue for seamless automation engineering. In: 13th IEEE international conference on emerging technologies and factory automation, ETFA 2008, pp 616–623Google Scholar
  13. 13.
    PLCopen (2013) TC6—XML schemes. In: PLCopen. For efficiency in automation. http://www.plcopen.org/pages/tc6_xml. Accessed 10 Nov 2015
  14. 14.
    Khronos Group (2015) COLLADA. 3D asset exchange schema. In: The khronos group—connecting software to silicon. https://www.khronos.org/collada. Accessed 10 Nov 2015
  15. 15.
    AutomationML consortium (2014) Whitepaper AutomationML Part 1—architecture and general requirements. In: AutomationML—first steps. https://www.automationml.org/o.red.c/erste-schritte.html. Accessed 10 Nov 2015
  16. 16.
    Arduino (2015) Arduino Genuino. https://www.arduino.cc. Accessed 10 Nov 2015
  17. 17.
    Raspberry Pi Foundation (2015) Raspberry Pi—teach, learn, and make with Raspberry Pi. https://www.raspberrypi.org. Accessed 10 Nov 2015
  18. 18.
    NodeMCU Team (2014) NodeMCU. Connect things EASY. http://www.nodemcu.com. Accessed 10 Nov 2015
  19. 19.
    Finkenzeller K (2015) RFID-Handbuch: Grundlagen und praktische Anwendungen von Transpondern, kontaktlosen Chipkarten und NFC. Carl Hanser Verlag GmbH & Company KG, MünchenCrossRefGoogle Scholar
  20. 20.
    Lenk B (2003) Handbuch der Automatischen Identifikation 1: ID-Techniken, 1D-Codes, 2D-Codes, 3D-Codes. Lenk Monika Fachbuchverlag, Kirchheim unter TeckGoogle Scholar
  21. 21.
    Edstrom D (2013) MTConnect: to measure is to know. Virtual Photons Electrons, LLC, AshburnGoogle Scholar
  22. 22.
    Sobel W (2014) MTConnect standard. Part 1—overview and protocol. In: Standard—MTConnect. http://www.mtconnect.org/standard. Accessed 10 Nov 2015
  23. 23.
    Mahnke W, Leitner S, Damm M (2009) OPC unified architecture. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    MTConnect Institute (2015) OPC UA companion specification. In: MTConnect. http://www.mtconnect.org/opc-ua-companion-specification. Accessed 10 Nov 2015
  25. 25.
    Henßen R, Schleipen M (2014) Interoperability between OPC UA and AutomationML. In: Disruptive innovation in manufacturing engineering towards the 4th industrial revolution. In: Proceedings of the 8th international CIRP conference on digital enterprise technology. Fraunhofer Verlag, StuttgartGoogle Scholar
  26. 26.
    Raza MB, Harrison R (2011) Ontological knowledge based system for product, process and resource relationships in automotive industry. Wolfson School of Mechanical and Manufacturing Engineering; Loughborough University, Loughborough, LE11 3TU, UK. http://ceur-ws.org/Vol-748/paper3.pdf. Accessed 10 Apr 2016
  27. 27.
    Ferrer BR, Ahmad B, Lobov A, Vera DA, Lastra JLM, Harrison R (2015) An approach for knowledge-driven product, process and resource; mappings for assembly automation. In: IEEE international conference on automation science and engineering (CASE), Gothenburg, pp 1104–1109. doi:  10.1109/CoASE.2015.7294245
  28. 28.
    EVRYTHNG Ltd. (2014) Every thing connected. How web object technology is putting every physical thing on the web (white paper). In: Make products smart. https://evrythng.com/file-download/every-thing-connected-white-paper. Accessed 10 Nov 2015
  29. 29.
    Mühlhäuser M (2008) Smart products: an introduction. In: Mühlhäuser M, Ferscha A, Aitenbichler E (eds) Communications in computer and information science. Springer, Berlin, pp 158–164Google Scholar
  30. 30.
    Trifa V, Guinard D, Carrera D (2015) Web thing model. In: World wide web consortium (W3C). http://www.w3.org/Submission/2015/SUBM-wot-model-20150824. Accessed 10 Nov 2015
  31. 31.
    Kröner A, Haupert J, Deru M, Bergweiler S, Hauck C (2014) Enabling data collections for open-loop applications in the internet of things. Int J Adv Internet Technol 7: 75–85. IARIAGoogle Scholar
  32. 32.
    Kröner A, Haupert J, Seißler M, Kiesel B, Schennerlein B, Horn S, Schreiber D, Barthel R (2011) Object memory modeling W3C incubator group, 2011. http://www.w3.org/2005/Incubator/omm/XGR-omm-20111026/. Accessed 10 Nov 2015
  33. 33.
    Freed N, Borenstein N (1996) Multipurpose internet mail extensions (MIME) part two: media types. https://tools.ietf.org/html/rfc2046. Accessed 10 Nov 2015
  34. 34.
    Dublin Core® Metadata Initiative (2013) DCMI Metadata Terms. http://dublincore.org/documents/2012/06/14/dcmi-terms/. Accessed 10 Nov 2015
  35. 35.
    Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. https://tools.ietf.org/html/rfc5280. Accessed 10 Nov 2015
  36. 36.
    Brandherm B, Haupert J, Kröner A, Schmitz M, Lehmann F (2010) Demo: authorized access on and interaction with digital product memories. In: 8th IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 838–840Google Scholar
  37. 37.
    Brandherm B, Haupert J, Kröner A, Schmitz M, Lehmann F (2010) Roles and rights management concept with identification by electronic identity card. In: 8th IEEE international conference on pervasive computing and communications (PerCom). IEEE, pp 768–771Google Scholar
  38. 38.
    Farrell J, Lausen H (2007) Semantic annotations for WSDL and XML schema, W3C. http://www.w3.org/TR/2007/REC-sawsdl-20070828/. Accessed 10 Nov 2015
  39. 39.
    Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S, Narayanan S, Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S: semantic markup for web services, W3C. http://www.w3.org/Submission/OWL-S/. Accessed 10 Nov 2015
  40. 40.
    Nixon T, Regnier A, Driscoll D, Mensch, A (2009) Devices profile for web services (DPWS), Oasis. http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01. Accessed 10 Nov 2015
  41. 41.
    RAMI (2015) Das Referenzarchitekturmodell RAMI 4.0 und die Industrie 4.0-Komponente, ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e.V., Frankfurt(Main), Germany. http://www.zvei.org/Themen/Industrie40/Seiten/Das-Referenzarchitekturmodell-RAMI-40-und-die-Industrie-40-Komponente.aspx. Accessed 13 Apr 2016

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.German Research Center for Artificial Intelligence (DFKI GmbH), Projektbuero BerlinBerlinGermany
  2. 2.German Research Center for Artificial Intelligence (DFKI GmbH)SaarbrueckenGermany

Personalised recommendations