Communication and Networking for the Industrial Internet of Things

Chapter

Abstract

In the past, communication in industrial monitoring, automation, and control was mostly realized locally, often relying on wired solutions, restricting communication and control to single factory environments. To overcome this limitation, the Industrial Internet of Things (IIoT) envisions the integration of these local communication structures into larger systems, such as the interconnection between factories and suppliers, or even the Internet. Moreover, to achieve flexibility with regard to automation processes and to save costs in deployment and maintenance, wireless solutions more and more find their way into factories. In this chapter, we present recent efforts and standardized solutions to realize wireless communication for local industrial automation and ultimately identify the requirements and mechanisms for connecting these setups to globally accessible communication infrastructures. To this end, we focus on special requirements unique to the IIoT, e.g., the use of highly constraint devices and the resulting effects on the use of standardized protocols.

References

  1. 1.
    Akerberg J, Gidlund M, Bjorkman M (2011) Future research challenges in wireless sensor and actuator networks targeting industrial automation. In: 9th IEEE international conference on industrial informatics (iNDIN), pp 410–415. doi:10.1109/INDIN.2011.6034912
  2. 2.
    Akyildiz IF, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):23–30. doi:10.1109/MCOM.2005.1509968 CrossRefMATHGoogle Scholar
  3. 3.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of Things: a survey on enabling technologies, protocols and applications. IEEE Commun Surv Tutor 17(4):2347–2376. doi:10.1109/COMST.2015.2444095 CrossRefGoogle Scholar
  4. 4.
    Andreev S, Galinina O, Pyattaev A, Gerasimenko M, Tirronen T, Torsner J, Sachs J, Dohler M, Koucheryavy Y (2015) Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap. IEEE Commun Mag 53(9):32–40. doi:10.1109/MCOM.2015.7263370 CrossRefGoogle Scholar
  5. 5.
    Atzori L, Iera A, Morabito G (2010) The Internet of Things: a survey. Comput Netw 54(15):2787–2805. doi:10.1016/j.comnet.2010.05.010 CrossRefMATHGoogle Scholar
  6. 6.
    Basagni S, Conti M, Giordano S, Stojmenovic I (2004) Mobile ad hoc networking. Wiley, PiscatawayGoogle Scholar
  7. 7.
    Bormann C (2014) 6LoWPAN-GHC: generic header compression for IPv6 over low-power wireless personal area networks (6LoWPANs). RFC 7400; RFC EditorGoogle Scholar
  8. 8.
    Bormann C, Shelby Z (2015) Block-wise transfers in CoAP. IETF Secretariat; draft-ietf-core-block-18.txt, Working DraftGoogle Scholar
  9. 9.
    Bormann C, Castellani A, Shelby Z (2012) CoAP: an application protocol for billions of tiny internet nodes. IEEE Internet Comput 16(2):62–67. doi:10.1109/MIC.2012.29 CrossRefGoogle Scholar
  10. 10.
    Botta A, de Donato W, Persico V, Pescape A (2014) On the integration of cloud computing and Internet of Things. In: International conference on future Internet of Things and cloud (FiCloud), pp 23–30. doi:10.1109/FiCloud.2014.14
  11. 11.
    Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR). RFC 3626; RFC EditorGoogle Scholar
  12. 12.
    Colitti W, Steenhaut K, De Caro N (2011) Integrating wireless sensor networks with the web. In: Proceedings of workshop on extending the internet to low power and lossy networks (IP+SN)Google Scholar
  13. 13.
    Cutler TR (2014) The internet of manufacturing things. Ind Eng 46(8):37–41Google Scholar
  14. 14.
    Deering S, Hinden R (1998) Internet protocol, version 6 (IPv6) specification. RFC 2460; RFC EditorGoogle Scholar
  15. 15.
    Diggavi S, Al-Dhahir N, Stamoulis A, Calderbank A (2004) Great expectations: the value of spatial diversity in wireless networks. Proc IEEE 92(2):219–270. doi:10.1109/JPROC.2003.821914 CrossRefGoogle Scholar
  16. 16.
    Dinh NQ, Kim D-S (2012) Performance evaluation of priority CSMA-CA mechanism on ISA100.11a wireless network. Comput Stand Interfaces 34(1):117–123. doi:10.1016/j.csi.2011.06.001 CrossRefGoogle Scholar
  17. 17.
    Dombrowski C, Gross J (2015) EchoRing: a low-latency, reliable token-passing MAC protocol for wireless industrial networks. In: Proceedings of 21th European wireless conference, pp 1–8Google Scholar
  18. 18.
    Fielding RT, Taylor RN (2000) Principled design of the modern web architecture. In: Proceedings of the 22nd international conference on software engineering. ACM, pp 407–416. doi:10.1145/337180.337228
  19. 19.
    Fielding R, Gettys J, Mogul J, Frystyk H, Berners-Lee T (1997) Hypertext transfer protocol—HTTP/1.1. RFC 2616; RFC EditorGoogle Scholar
  20. 20.
    Foschini G, Chizhik D, Gans M, Papadias C, Valenzuela R (2003) Analysis and performance of some basic space-time architectures. IEEE J Sel Areas Commun 21(3):303–320. doi:10.1109/JSAC.2003.809456 CrossRefGoogle Scholar
  21. 21.
    Frotzscher A, Wetzker U, Bauer M, Rentschler M, Beyer M, Elspass S, Klessig H (2014) Requirements and current solutions of wireless communication in industrial automation. In: IEEE international conference on communications workshops (ICC 2014), pp 67–72. doi:10.1109/ICCW.2014.6881174
  22. 22.
    Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co. Inc., BostonMATHGoogle Scholar
  23. 23.
    Groover MP (2007) Automation, production systems, and computer-integrated manufacturing, 3rd edn. Prentice Hall Press, Upper Saddle RiverGoogle Scholar
  24. 24.
    Gummalla ACV, Limb JO (2000) Wireless medium access control protocols. IEEE Commun Surv Tutor 3(2):2–15. doi:10.1109/COMST.2000.5340799 CrossRefGoogle Scholar
  25. 25.
    Han S, Zhu X, Mok AK, Chen D, Nixon M (2011) Reliable and real-time communication in industrial wireless mesh networks. In: 17th IEEE real-time and embedded technology and applications symposium (RTAS). IEEE, pp 3–12. doi:10.1109/RTAS.2011.9
  26. 26.
    Hartke K (2014) Observing resources in the constrained application protocol (CoAP). RFC 7641; RFC EditorGoogle Scholar
  27. 27.
    Huang S, Zhang Z (2011) Principles of FECs with evaluating different types of FEC used in the internet and wireless networks. In: International conference on electronics, communications and control (ICECC), pp 2181–2184. doi:10.1109/ICECC.2011.6066671
  28. 28.
    Hui J, Thubert P (2011) Compression format for IPv6 datagrams over IEEE 802.15.4-based networks. RFC 6282; RFC EditorGoogle Scholar
  29. 29.
    Hummen R, Henze M, Catrein D, Wehrle K (2012) A cloud design for user-controlled storage and processing of sensor data. In: IEEE 4th international conference on cloud computing technology and science (CloudCom), pp 232–240. doi:10.1109/CloudCom.2012.6427523
  30. 30.
    Hunkeler U, Truong HL, Stanford-Clark A (2008) MQTT-S—a publish/subscribe protocol for wireless sensor networks. In: 3rd international conference on communication systems software and middleware and workshops (COMSWARE 2008), pp 791–798. doi:10.1109/COMSWA.2008.4554519
  31. 31.
    IEC (2010) Industrial communication networks—wireless communication network and communication profiles—WirelessHART. IEC 62591 Ed. 1.0 b:2010 StandardGoogle Scholar
  32. 32.
    IEEE (2005) IEEE standard for information technology—local and metropolitan area networks—specific requirements—Part 15.1a: wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). IEEE Std 802151-2005 (Revision of IEEE Std 802151-2002). doi:10.1109/IEEESTD.2005.96290
  33. 33.
    IEEE (2012) IEEE standard for information technology–telecommunications and information exchange between systems local and metropolitan area networks–specific requirements Part 11: wireless lan medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 80211-2012 (Revision of IEEE Std 80211-2007). doi:10.1109/IEEESTD.2012.6178212
  34. 34.
    IEEE (2012) IEEE standard for ethernet. IEEE Std 8023-2012 (Revision to IEEE Std 8023-2008). doi:10.1109/IEEESTD.2012.6419735
  35. 35.
    IEEE (2006) IEEE standard for local and metropolitan area networks—Part 15.4: low rate wireless personal area networks (LR-WPANs). IEEE Std 802154-2006 (Revision of IEEE Std 802154-2003). doi:10.1109/IEEESTD.2006.232110
  36. 36.
    ISA (2011) Wireless systems for industrial automation: process control and related applicationsGoogle Scholar
  37. 37.
    Ishaq I, Carels D, Teklemariam GK, Hoebeke J, den Abeele FV, Poorter ED, Moerman I, Demeester P (2013) IETF standardization in the field of the Internet of Things (IoT): a survey. J Sens Actuator Netw 2(2):235–287CrossRefGoogle Scholar
  38. 38.
    Kushalnagar N, Montenegro G, Schumacher C (2007) IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. RFC 4919; RFC EditorGoogle Scholar
  39. 39.
    Laneman J, Tse D, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans Inf Theor 50(12):3062–3080. doi:10.1109/TIT.2004.838089 MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Li F, Voegler M, Claessens M, Dustdar S (2013) Efficient and scalable IoT service delivery on cloud. In: IEEE sixth international conference on cloud computing (CLOUD), pp 740–747. doi:10.1109/CLOUD.2013.64
  41. 41.
    LogMeIn Inc. (2015) Xively by LogMeIn. https://xively.com. Accessed 20 May 2016
  42. 42.
    Lu G, Krishnamachari B, Raghavendra C (2004) Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks. In: IEEE international conference on performance, computing, and communications, pp 701–706. doi:10.1109/PCCC.2004.1395158
  43. 43.
    Marzetta T (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun 9(11):3590–3600. doi:10.1109/TWC.2010.092810.091092 CrossRefGoogle Scholar
  44. 44.
    Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944; RFC EditorGoogle Scholar
  45. 45.
    Mulligan G (2007) The 6LoWPAN architecture. In: Proceedings of the 4th workshop on embedded networked sensors (EmNets 2007). ACM, pp 78–82, doi:10.1145/1278972.1278992
  46. 46.
    Neumann P (2007) Communication in industrial automation—what is going on? Control Eng Pract 15(11):1332–1347. doi:10.1016/j.conengprac.2006.10.004 CrossRefGoogle Scholar
  47. 47.
    Nixon M (2012) A comparison of WirelessHART™ and ISA100. 11aGoogle Scholar
  48. 48.
    Nobre M, Silva I, Guedes LA (2015) Routing and scheduling algorithms for WirelessHARTNetworks: a survey. Sensors 15(5):9703–9740. doi:10.3390/s150509703 CrossRefGoogle Scholar
  49. 49.
    Perkins C, Belding-Royer E, Das S (2003) Ad hoc on-demand distance vector (AODV) routing. RFC 3561; RFC EditorGoogle Scholar
  50. 50.
    Petersen S, Carlsen S (2011) WirelessHART versus ISA100.11a: the format war hits the factory floor. IEEE Ind Electron Mag 5(4):23–34. doi:10.1109/MIE.2011.943023 CrossRefGoogle Scholar
  51. 51.
    Phoenix Contact (2000) INTERBUS RS232 communication manualGoogle Scholar
  52. 52.
    Pister K, Thubert P, Dwars S, Phinney T (2009) Industrial routing requirements in low-power and lossy networks. RFC 5673; RFC EditorGoogle Scholar
  53. 53.
    Poor HV, Wornell GW (1998) Wireless communications: signal processing perspectives. Prentice Hall PTR, Upper Saddle RiverGoogle Scholar
  54. 54.
    Popovski P (2014) Ultra-reliable communication in 5G wireless systems. In: 1st international conference on 5G for ubiquitous connectivity (5GU), pp 146–151. doi:10.4108/icst.5gu.2014.258154
  55. 55.
    Postel J (1980) User datagram protocol. RFC 768; RFC EditorGoogle Scholar
  56. 56.
    Postel J (1981) Transmission control protocol. RFC 793; RFC EditorGoogle Scholar
  57. 57.
    Qiao D, Choi S, Shin KG (2007) Interference analysis and transmit power control in IEEE 802.11a/h wireless LANs. IEEE/ACM Trans Netw 15(5):1007–1020. doi:10.1109/TNET.2007.900381 CrossRefGoogle Scholar
  58. 58.
    Serror M, Dombrowski C, Wehrle K, Gross J (2015) Channel coding versus cooperative ARQ: reducing outage probability in ultra-low latency wireless communications. In: IEEE GlobeCom workshop on ultra-low latency and ultra-high reliability in wireless communicationsGoogle Scholar
  59. 59.
    Sha M, Gunatilaka D, Wu C, Lu C (2015) Implementation and experimentation of industrial wireless sensor-actuator network protocols. In: Wireless sensor networks. Springer, Switzerland, pp 234–241. doi:10.1007/978-3-319-15582-1_15
  60. 60.
    Shelby Z, Bormann C (2011) 6LoWPAN: the wireless embedded internet. Wiley, ChichesterGoogle Scholar
  61. 61.
    Shelby Z, Hartke K, Bormann C (2014) The constrained application protocol (CoAP). RFC 7252; RFC EditorGoogle Scholar
  62. 62.
    Shelby Z, Chakrabarti S, Nordmark E, Bormann C (2012) Neighbor discovery optimization for IPv6 over low-power wireless personal area networks (6LoWPANs). RFC 6775; RFC EditorGoogle Scholar
  63. 63.
    Song J, Han S, Mok A, Chen D, Lucas M, Nixon M (2008) WirelessHART: applying wireless technology in real-time industrial process control. In: IEEE real-time and embedded technology and applications symposium (RTAS 2008), pp 377–386. doi:10.1109/RTAS.2008.15
  64. 64.
    Spencer Q, Peel C, Swindlehurst A, Haardt M (2004) An introduction to the multi-user MIMO downlink. IEEE Commun Mag 42(10):60–67. doi:10.1109/MCOM.2004.1341262 CrossRefGoogle Scholar
  65. 65.
    Stanford-Clark A, Truong HL (2013) MQTT for sensor networks (MQTT-SN) protocol specification version 1.2. http://mqtt.org/documentation. Accessed 20 May 2016
  66. 66.
    Suriyachai P, Roedig U, Scott A (2012) A survey of MAC protocols for mission-critical applications in wireless sensor networks. IEEE Commun Surv Tutor 14(2):240–264. doi:10.1109/SURV.2011.020211.00036 CrossRefGoogle Scholar
  67. 67.
    Tarokh V, Seshadri N, Calderbank A (1998) Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theor 44(2):744–765. doi:10.1109/18.661517 MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Thomesse J-P (2005) Fieldbus technology in industrial automation. Proc IEEE 93(6):1073–1101. doi:10.1109/JPROC.2005.849724 CrossRefGoogle Scholar
  69. 69.
    Thomson S, Narten T, Jinmei T (2007) IPv6 stateless address autoconfiguration. RFC 4862; RFC EditorGoogle Scholar
  70. 70.
    Tovar E, Vasques F (1999) Real-time Fieldbus communications using profibus networks. IEEE Trans Ind Electron 46(6):1241–1251. doi:10.1109/41.808018 CrossRefGoogle Scholar
  71. 71.
    Vasseur J-P, Dunkels A (2010) Interconnecting smart objects with IP: the next internet. Morgan Kaufmann, BurlingtonGoogle Scholar
  72. 72.
    Vincent SJ (2001) Foundation Fieldbus high speed ethernet control system. Fieldbus IncGoogle Scholar
  73. 73.
    Watteyne T, Mehta A, Pister K (2009) Reliability through frequency diversity: why channel hopping makes sense. In: Proceedings of the 6th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. ACM, pp 116–123. doi:10.1145/1641876.1641898
  74. 74.
    Willig A, Kubisch M, Hoene C, Wolisz A (2002) Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer. IEEE Trans Ind Electron 49(6):1265–1282. doi:10.1109/TIE.2002.804974 CrossRefGoogle Scholar
  75. 75.
    Willig A, Matheus K, Wolisz A (2005) Wireless technology in industrial networks. Proc IEEE 93(6):1130–1151. doi:10.1109/JPROC.2005.849717 CrossRefGoogle Scholar
  76. 76.
    Winter T, Thubert P, Brandt A, Hui J, Kelsey R, Levis P, Pister K, Struik R, Vasseur J, Alexander R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550; RFC EditorGoogle Scholar
  77. 77.
    Wirtz H, Rüth J, Serror M, Zimmermann T, Wehrle K (2015) Enabling ubiquitous interaction with smart things. In: 12th annual IEEE international conference on sensing, communication, and networking (IEEE SECON 2015), pp 256–264Google Scholar
  78. 78.
    Wu D, Greer MJ, Rosen DW, Schaefer D (2013) Cloud manufacturing: strategic vision and state-of-the-art. J Manuf Syst 32(4):564–579. doi:10.1016/j.jmsy.2013.04.008 CrossRefGoogle Scholar
  79. 79.
    Yazar D, Dunkels A (2009) Efficient application integration in IP-based sensor networks. In: Proceedings of the first ACM workshop on embedded sensing systems for energy-efficiency in buildings. ACM, pp 43–48. doi:10.1145/1810279.1810289

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Communication and Distributed SystemsRWTH Aachen UniversityAachenGermany

Personalised recommendations