Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach

  • Paul-Olivier Dehaye
  • Mihnea Iancu
  • Michael Kohlhase
  • Alexander Konovalov
  • Samuel Lelièvre
  • Dennis Müller
  • Markus Pfeiffer
  • Florian Rabe
  • Nicolas M. Thiéry
  • Tom Wiesing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9791)


OpenDreamKit  – “Open Digital Research Environment Toolkit for the Advancement of Mathematics” – is an H2020 EU Research Infrastructure project that aims at supporting, over the period 2015–2019, the ecosystem of open-source mathematical software systems. OpenDreamKit will deliver a flexible toolkit enabling research groups to set up Virtual Research Environments, customised to meet the varied needs of research projects in pure mathematics and applications.

An important step in the OpenDreamKit endeavor is to foster the interoperability between a variety of systems, ranging from computer algebra systems over mathematical databases to front-ends. This is the mission of the integration work package. We report on experiments and future plans with the Math-in-the-Middle approach. This architecture consists of a central mathematical ontology that documents the domain and fixes a joint vocabulary, or even a language, going beyond existing systems such as OpenMath, combined with specifications of the functionalities of the various systems. Interaction between systems can then be enriched by pivoting around this architecture.


Mathematical Knowledge Elliptic Curf Mathematical Concept Computer Algebra System Core Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the other participants of the St Andrews workshop, in particular John Cremona, Luca de Feo, Steve Linton, and Viviane Pons, for discussions and experimentation which clarified the ideas behind the math-in-the-middle approach.

We acknowledge financial support from the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541), from the EPSRC Collaborative Computational Project CoDiMa (EP/M022641/1) and from the Swiss National Science Foundation grant PP00P2_138906.


  1. [Aus+03]
    Ausbrooks, R.: Mathematical Markup Language (MathML) v. 2.0. In: World Wide Web Consortium Recommendation (2003)Google Scholar
  2. [BL]
    Breuer, T., Linton, S.: The GAP 4 type system: organising algebraic algorithms. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC 1998, pp. 38–45. ACMGoogle Scholar
  3. [Bus+04]
    Buswell, S., et al.: The Open Math standard. Technical report Version 2.0. The Open Math Society (2004)Google Scholar
  4. [CDT04]
    Caprotti, O., Dewar, M., Turi, D.: Mathematical Ser vice Matching Using Description Logic and OWL. Technical report, The MONET Consortium (2004)Google Scholar
  5. [Dev16]
    The Sage Developers. SageMath the Sage Mathematics Software System (Version 7.0) (2016).
  6. [EI]
  7. [Gap]
    GAP-Groups, Algorithms, Programming, Version 4.8.2. The GAP Group (2016).
  8. [HR09]
    Horn, P., Roozemond, D.: OpenMath in SCIEnce: SCSCP and POPCORN. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS (LNAI), vol. 5625, pp. 474–479. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. [KMR13]
    Kohlhase, M., Mance, F., Rabe, F.: A universal machine for biform theory graphs. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 82–97. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39320-4 CrossRefGoogle Scholar
  10. [Koh06]
    Kohlhase, M.: OMDoc–An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  11. [Koh13]
    Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A., et al. (eds.) 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pp. 30–36. IEEE Press, Timisoara (2013)Google Scholar
  12. [KRSC11]
    Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A foundational view on integration problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 107–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. [KW03]
    Kanayama, H., Watanabe, H.: Multilingual translation via annotated hub language. In: Proceedings of MT-Summit IX, pp. 202–207 (2003)Google Scholar
  14. [Lmfa]
    LMFDB GitHub repository.
  15. [Lmfb]
    LMFDB inventory GitHub repository.
  16. [Lmfc]
    LMFDB Knowledge Database.
  17. [Lmfd]
    LMFDB Knowledge Database entry for Minimal Weierstrass equation over the rationals.
  18. [LN12]
    Lübeck, F., Neunhöffer, M.: GAPDoc, A Meta Package for GAP Documentation, Version 1.5.1 (2012).
  19. [MMT]
    Rabe, F.: The MMT Language and System. Accessed 11 Oct 2011
  20. [ODK]
    OpenDreamKit Open Digital Research Environment Toolkit for the Advancement of Mathematics.
  21. [Rda]
    Research Data Alliance Type Registries Working Group.
  22. [RK13]
    Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [SC]
    Thiéry, N.M., et al.: Elements, parents, categories in Sage: a primer.
  24. [Wie92]
    Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paul-Olivier Dehaye
    • 1
  • Mihnea Iancu
    • 2
  • Michael Kohlhase
    • 2
  • Alexander Konovalov
    • 3
  • Samuel Lelièvre
    • 4
  • Dennis Müller
    • 2
  • Markus Pfeiffer
    • 3
  • Florian Rabe
    • 2
  • Nicolas M. Thiéry
    • 4
  • Tom Wiesing
    • 2
  1. 1.University of ZürichZürichSwitzerland
  2. 2.Jacobs UniversityBremenGermany
  3. 3.University of St AndrewsSt AndrewsScotland
  4. 4.Université Paris-SudOrsayFrance

Personalised recommendations